Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Ошибки косвенных измерений




Часто измеряется не непосредственно интересующая нас величина, а другая, зависящая от нее некоторым образом. Например, при резании металлов часто непосредственно измеряются деформации, ЭДС, по которым судят о возникающих силах и температурах. При этом также необходимо оценить ошибку измерения.

При косвенных измерениях значение y измеряемой величины находят по некоторой формуле

y = ¦ (х1, х2, ... , хm),

где x1, x2, ... xm - средние арифметические измеряемые ( непосредственно) величины. Рассмотрим функцию общего вида

y = ¦ (х1, х2, ... , хm)

где x1, x2, ... , xm - независимые переменные, для определения которых производятся n прямых независимых измерений по каждой xi.

Обозначим значения переменных через среднее значение и отклонения

y ± D y = ¦ (x1 ± D x1, x2 ± D x2, ... , xm ± D xm).

Эту функцию представим рядом Тейлора, ограничив его первыми членами ряда ( принимая D xi < < xi )

y ± D y = ¦ (х1, х2, ... , хn) ± ,

где

- производная функции по xi, взятая в точке xi.

Учитывая, что y = ¦ (x1, x2, ... , xm) получаем

D y = .

Чтобы учесть погрешности D xi всех n опытов целесообразно использовать средние квадратические оценки ( D xi )2, так как D xi = 0.

Возведем в квадрат левую и правую части уравнения и разделим на n

.

Здесь суммы удвоенных произведений типа

согласно четвертому свойству случайных ошибок ( D xi = 0 ).

Тогда в левой и правой частях имеем среднеквадратические погрешности функции и аргументов

S .

Пример. При тарировке динамометра было получено уравнение зависимости силы от отклонения l луча осциллографа вида P = 25 l. Точность измерения отклонения D l = 1 мм. Тогда

D P = .

В качестве меры точности лучше выступает не абсолютная, а относительная погрешность.

e .

Рассмотрим ее определение на примере. Пусть

y = cx1a × x2b × x3g .

Тогда

;
;
.


= .

Аналогично можно определить относительную погрешность и при других зависимостях. Зная относительную погрешность, можно определить и абсолютное ее значение:

D y = y× e y.


Поделиться:

Дата добавления: 2015-08-05; просмотров: 98; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.018 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты