КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Номограммы в декартовой системе координатВ разделах 3.1., 3.2. описана процедура построения графиков для функции одного переменного. При этом на графике получается одна линия ( прямая или кривая ). Если же изучаемая функция зависит от двух переменных Z = ¦ (х, y), то придавая в этом уравнении, например, параметру y ряд частных ( постоянных ) значений y1, y2, ..., yn можно, как и для функции одного переменного, построить зависимости Z = ¦ (х, y1); Z = ¦ (х, y2); ................... Z = ¦ (х, yn). Получим систему кривых ( в частном случае прямых ), называемых номограммой из ² помеченных² линий, т.к. каждая линия помечается соответствующим значением yi. Пример. При исследовании процесса фрезерования было установлено, что наиболее целесообразно величину радиального биения смежных зубьев фрезы назначать по условию обеспечения участия в процессе резания всех зубьев фрезы. Аналитически это условие выражается уравнением , где Sz - расчетная величина подачи на зуб, мм/ зуб; k = - параметр операции; D - диаметр фрезы, мм; t - глубина резания, мм; D - величина биения смежных зубьев фрезы, мм. Как видно, Sz = ¦ (k, D ) является функцией двух параметров. Здесь можно отметить, что, фактически Sz = ¦ (D, t, D ), т.е. функцией трех параметров, но два параметра (D, t) заменены одним - k = , легко определяемым и уменьшающим количество переменных. Данный прием широко используется в номографии. Теперь необходимо определиться с осями и помеченным параметром. В качестве оси ординат, в соответствии с функциональной зависимостью, рационально принять Sz. В качестве же оси абсцисс можно принять либо k, либо D . Если в качестве оси ординат принять k ( а помеченным параметром D i ), то зависимость Sz = ¦ (k, D i) будет получаться криволинейной, в соответствии с закономерностью . Проще строить и использовать прямолинейные графики при равномерных шкалах. Поэтому стараются номограммы строить на основе прямых линий. Поэтому лучше будет строить номограмму из помеченных линий вида Sz = ¦ (D , Ki), где . Теперь выбираем масштаб построения и диапазоны изменения переменных. С учетом условий процесса фрезерования принимаем D £ 0,08 мм; Sz £ 0,20 мм/ зуб. Параметр k изменяем дискретно k = 2; 5; 10; 20; 30; 40; 50. Так как зависимость Sz = ¦ (D , Ki) является прямой линией, проходящей через начало координат, то для построения графиков достаточно вычислить только одно значение Sz при каком - либо значении D . Например, для k = 2, при D = 0,06 мм имеем ( мм/зуб ). Теперь через точки ( 0; 0 ) и ( 0,06; 0,06 ) можно провести прямую линию и пометить ее параметр k = 2. Аналогично проводятся и другие линии. На номограмме наносится линия, показывающая порядок ее использования.
|