КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Понятие статистической гипотезы и статистического критерияСтатистической гипотезой называют любое утверждение о виде или свойствах распределения наблюдаемых в эксперименте случайных величин. Такие утверждения можно делать на основе теоретических соображений или статистических исследований других наблюдений. Например, при многократном измерении некоторой физической величины, точное значение Х которой не известно, но в процессе измерений оно меняется. На результат измерений влияют многие случайные факторы, поэтому результат i - го измерения можно записать в виде аi = Х + e i, где e i - случайная погрешность измерения. Если e i складывается из большого числа ошибок, каждая из которых не велика, то на основании центральной предельной теоремы можно предположить, что случайные величины аi имеют нормальное распределение. Такое предположение является статистической гипотезой о виде распределения наблюдаемой случайной величины. Если для исследуемого явления сформулирована та или иная гипотеза ( обычно ее называют основной или нулевой гипотезой и обозначают символом Но ), то задача состоит в том, чтобы сформулировать правило, которое позволяло бы по результатам наблюдений принять или отклонить эту гипотезу. Правило, согласно которому проверяемая гипотеза Но принимается или отвергается, называется статистическим критерием проверки гипотезы Но . Наиболее распространены такие статистические гипотезы, как: а) вида распределения; б) однородности нескольких серий независимых результатов; в) случайности результатов эксперимента и т.п. Статистический критерий проверки гипотезы Но служит для определения возможного отклонения от основной гипотезы. Характер отклонений может быть различным. Если критерий ² улавливает² любые отклонения от Но, то такой критерий называют универсальным или критерием согласия. Существуют критерии, которые выявляют отклонения от заданного вида, это узко направленные критерии. Выбор правила проверки гипотезы Но эквивалентен заданию критической области х1, при попадании в которую переменной х гипотеза Но отвергается. Критерий, определяемый критической областью х1 называют критерием х1. В процессе проверки гипотезы Но можно прийти к правильному решению или совершить ошибку первого рода - отклонить Но когда она верна, или ошибку второго рода - принять Но, когда она ложна. Иными словами, ошибка первого рода имеет место, если точка х попадает в критическую область х1, в то время как верна нулевая гипотеза Но, а ошибка второго рода - когда х Î хо, но гипотеза Но ложна. Желательно провести проверку гипотезы так, чтобы свести к минимуму вероятности обоих ошибок. Однако при данном числе испытаний n в общем случае невозможно одновременно обе эти вероятности сделать как угодно малыми. Поэтому наиболее рационально выбирать критическую область следующим образом: при заданном числе испытаний n устанавливается граница для вероятности ошибки первого рода и при этом выбирается та критическая область х1, для которой вероятность ошибки второго рода минимальна.
|