КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Основные свойства функций. 1) Область определения функции и область значений функции.
1) Область определения функции и область значений функции. Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f(x) определена. В элементарной математике изучаются функции только на множестве действительных чисел.
2) Нули функции. Нуль функции – такое значение аргумента, при котором значение функции равно нулю. Функция может иметь несколько нулей.Например, функция y = x ( x + 1 ) ( x3 ) имеет три нуля: x = 0, x = 1, x = 3. Геометрически нуль функции – это абсцисса точки пересечения графика функции с осью Х . На рис.7 представлен график функции с нулями: x = a, x = b и x = c . 3) Промежутки знакопостоянства функции. Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны. Пример Найти интервалы знакопостоянства функции. Решение: 1) Функция определена и непрерывна на всей числовой прямой. Таким образом, точки разрыва и «нехорошие» промежутки отсутствуют. 2) Найдём нули функции. Для этого нужно решить уравнение . В данном случае: Дискриминант положителен, значит, уравнение имеет два действительных корня: 3) Откладываем все найденные точки на числовой оси: 4) Монотонность функции. Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции. Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции. Функция, которая только возрастает или только убывает, называется монотонной. 5) Четность (нечетность) функции. Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат. Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат. 6) Ограниченная и неограниченная функции. Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.
Функция, изображённая на рис.3, является ограниченной, но не монотонной. Функция на рис.4 - как раз наоборот, монотонная, но неограниченная. 7) Периодическость функции. Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. П р и м е р . Какое число является периодом функции sin 2x ?
Р е ш е н и е . Рассмотрим sin 2x = sin ( 2x + 2 n ) = sin [ 2 ( x + n
Мы видим, что добавление n к аргументу x, не меняет значение функции. Наименьшее отличное от нуля число из n есть таким образом, это период sin 2x . Асимптота. Если график функции неограниченно приближается к некоторой прямой при своём удалении от начала координат, то эта прямая называется асимптотой.
|