Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Билет №5. Магистрально-модульный принцип построения компьютера. Характеристики процессоров. Шина адреса и шина данных




Читайте также:
  1. A) обработки данных, вводимых в ЭВМ
  2. A) Правила организация передачи данных в сети
  3. A) прикладная программа, предназначенная для обработки структурированных в виде таблицы данных
  4. A) прикладная программа, предназначенная для обработки структурированных в виде таблицы данных
  5. A) Результат вычисления формулы на основе имеющихся данных
  6. A) Совокупность программных средств, с помощью которых создается база данных и поддерживается в процессе эксплуатации
  7. Cистема качества,основанные на принципах ХАССП
  8. I Общеэкономические принципы.
  9. I. Психофизиологические принципы
  10. II.2. Методика построения напорной и пьезометрической линий

Еще при создании первых компьютеров в 1945 году знаменитый математик Джон фон Нейман описал, как должен быть устроен компьютер, чтобы он был универсальным и эффективным устройством для обработки информации. Эти основы конструкции компьютера называются принципами фон Неймана. Сейчас подавляющее большинство компьютеров в основных чертах соответствуют принципам фон Неймана.

Прежде всего, компьютер, согласно принципам фон Неймана, должен иметь следующие устройства:

· – арифметико-логическое устройство, выполняющее арифметические и логические операции;

· – устройство управления, которое организует процесс выполнения программ;

· – запоминающее устройство, или память для хранения программ и данных;

· – внешние устройства для ввода-вывода информации.

Современный персональный компьютер может быть реализован в настольном (desktop), портативном (notebook) или карманном (handheld) варианте.

Все основные компоненты настольного компьютера находятся внутри системного блока. Основным аппаратным компонентом компьютера является системная (материнская) плата (motherboard). На системной плате реализована магистраль обмена информацией, имеются разъемы для установки процессора и оперативной памяти, а также слоты для установки контролеров внешних устройств.

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.

Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроходные линии (см. рисунок). К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.



Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении – от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N=2I,

где I – разрядность шины адреса. Разрядность шины адреса постоянно увеличивается



Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию – считывание или запись информации из памяти – нужно производить, синхронизируют обмен информацией между устройствами и так далее.

Процессор. Процессор аппаратно реализуется на большой интегральной схеме (БИС). Большая интегральная схема на самом деле не является «большой» по размеру и представляет собой, наоборот, маленькую плоскую полупроводниковую пластину размером примерно 20×20 мм, заключенную в плоский корпус с рядами металлических штырьков (контактов). БИС является «большой» по количеству элементов.

Использование современных высоких технологий позволяет разместить на БИС процессора огромное количество (42 миллиона в процессоре Pentium 4) функциональных элементов (переключателей), размеры которых составляют всего около 0,13 микрон (1 микрон=10–6 метра).

Важнейшей характеристикой, определяющей быстродействие процессора, является тактовая частота, то есть количество тактов в секунду. Такт – это промежуток времени между началами подачи двух последовательных импульсов специальной микросхемой – генератором тактовой частоты, синхронизирующим работу узлов компьютера. На выполнение процессором каждой базовой операции (например, сложения) отводится определенное количество тактов. Ясно, что чем больше тактовая частота, тем больше операций в секунду выполняет процессор. Тактовая частота измеряется в мегагерцах (МГц) и гигагерцах (ГГц). 1 МГц = миллион тактов в секунду. За 20 с небольшим лет тактовая частота процессора увеличилась почти в 500 раз, от 5 МГц (процессор 8086, 1978 год) до 2,4 ГГц (процессор Pentium 4, 2002 год) – см. табл.



Тип Год выпуска Частота (МГц) Шина данных Шина адреса Адресуемая память
5-10 1 Мб
6-12,5 16 Мб
16-33 4 Гб
25-50 4 Гб
Pentium 60-166 4 Гб
Pentium II 200-300 64 Гб
Pentium III 450-1000 64 Гб
Pentium IV 1000-2400 64 Гб

Другой характеристикой процессора, влияющей на его производительность, является разрядность процессора. Разрядность процессора определяется количеством двоичных разрядов, которые могут передаваться или обрабатываться процессором одновременно. Часто уточняют разрядность процессора и пишут 64/36, что означает, что процессор имеет 64-разрядную шину данных и 36-разрядную шину адреса.

Производительность процессора является его интегральной характеристикой, которая зависит от частоты процессора, его разрядности, а также особенностей архитектуры (наличие кэш-памяти и др.). Производительность процессора нельзя вычислить, она определяется в процессе тестирования, по скорости выполнения процессором определенных операций в какой-либо программной среде.


 

Билет №6. Устройства памяти компьютера. Носители информации (гибкие диски, жесткие диски, диски CD-ROM/R/RW,DVD и др.)

Память в целом предназначена для хранения как данных, так и программ их обработки: согласно фундаментальному принципу фон Неймана, для обоих типов информации используется единое устройство.

Начиная с самых первых ЭВМ, память сразу стали делить на внутреннюю и внешнюю.

Под внутренней памятью современного компьютера принято понимать быстродействующую электронную память, расположенную на его системной плате. Сейчас такая память изготавливается на базе самых современных полупроводниковых технологий. Наиболее существенная часть внутренней памяти называется оперативное запоминающее устройство (ОЗУ, RAM: random access memory − память произвольного доступа). Его главное назначение состоит в том, чтобы хранить данные и программы для решаемых в текущий момент задач. Наверное, каждому пользователю известно, что при выключении питания содержимое ОЗУ полностью теряется.

Оперативная память изготавливается в виде модулей памяти. Модули памяти представляют собой пластины с рядами контактов, на которых размещаются БИС памяти. Модули памяти могут различаться между собой по размеру и количеству контактов (DIMM: dual in-line memory module − модуль памяти с двухрядным расположением выводов, DDR: double data rate − двойная скорость передачи данных), быстродействию (максимально возможная частота операций записи или считывания информации из ячеек памяти), информационной емкости (в МБайтах).

Кэш-память. Для ускорения доступа к оперативной памяти используется специальная сверхбыстродействующая кэш-память, которая располагается как бы "между" микропроцессором и основной памятью (DRAM: dynamic random access memory − динамическое запоминающее устройство с произвольным доступом): он состоит из кэш-контролера и кэш-памяти SRAM (static random access memory − статическое запоминающее устройство с произвольным доступом) и хранит копии наиболее часто используемых участков оперативной памяти. При обращении процессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем ко всей оперативной памяти, а в большинстве случаев необходимые данные уже содержатся в кэш-памяти, среднее время доступа к памяти уменьшается. Он появился относительно недавно, но начиная с 486-го процессора, без кэш-памяти не обходится ни одна модель процессора. Название «кэш» происходит от английского слова “cashe”, которое обозначает тайник или замаскированный склад (в частности, этим словом называют провиант, оставленный экспедицией для обратного пути, или запас продуктов, например, меда, которые животные создают на зиму).

Кэш-память может быть встроена непосредственно внутрь процессора (кэш-память, встроенная в кристалл), а может существовать в виде отдельного элемента. Кэш-память работает на той же частоте, что и сам процессор, имеет небольшой объем. Заметим, что именно размером кэш-памяти отличаются между собой идентичные в остальном процессоры Pentium и Celeron фирмы Intel, а также Athlon и Duron фирмы AMD. Как и для ОЗУ, увеличение объема кэша повышает эффективность работы компьютерной системы.

В состав внутренней памяти современного компьютера, помимо ОЗУ, также входят и некоторые другие разновидности памяти.

Постоянное запоминающее устройство (ПЗУ) или BIOS (Basic Input-Output System – базовая система ввода-вывода). В ПЗУ (BIOS) хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. Как очевидно из названия, информация в ПЗУ не зависит от состояния компьютера (для лучшего понимания можно указать на некоторую аналогию между информацией в ПЗУ и "врожденными" безусловными рефлексами у живых существ). Раньше содержимое ПЗУ раз и навсегда формировалось на заводе, теперь же современные технологии позволяют в случае необходимости обновлять его даже не извлекая из компьютерной платы.

CMOS (complementary metal-oxide semiconductor − комплементарный (дополняющий) металло-оксидный полупроводник) или полупостоянная память. Небольшой участок памяти для хранения параметров конфигурации компьютера. Его называют CMOS-памятью, поскольку эта память обычно выполняется по технологии, обладающей низким энергопотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера, поскольку для ее электропитания используется специальный аккумулятор. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера – SETUP. Она позволяет установить некоторые характеристики устройств компьютера (типы видеоконтроллера, жестких дисков и дисководов для дискет. Программа настройки конфигурации вызывается, если пользователь во время начальной загрузки нажмет клавишу Del.

Видеопамять (VRAM: video random access memory − запоминающее устройство с произвольным доступом для сопряжения микропроцессора с монитором, ОЗУ видеоизображений). Еще один вид памяти, который используется для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера – электронной схемы, управляющей выводом изображения на экран. Она характеризуется объемом, которая в последние годы достигла значения в 512 МБайт.

Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио- и видеоклипы и пр.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем, или дисководом, а хранится информация на носителях (например, дискетах). Внешняя память в отличие от внутренней памяти является энергонезависимой.

Основные виды накопителей:

  1. накопители на гибких магнитных дисках (НГМД);
  2. накопители на жестких магнитных дисках (НЖМД);
  3. накопители на CD-ROM, DVD.

Им соответствуют основные виды носителей:

  1. гибкие магнитные диски (Floppy Disk)
  2. жесткие магнитные диски (Hard Disk);
  3. диски CD-ROM, CD-R, CD-RW, DVD и др.

Накопители принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому в связи с видом и техническим исполнением носителя информации различают электронные, дисковые и ленточные устройства.

Основные характеристики накопителей и носителей:

  1. информационная емкость;
  2. скорость обмена информацией;
  3. надежность хранения информации;
  4. стоимость.

Магнитный принцип записи и считывания информации. В накопителях на гибких магнитных дисках (НГМД) и накопителях на жестких магнитных дисках (НЖМД), или винчестерах, в основу записи информации положено намагничивание ферромагнетиков в магнитном поле, хранение информации основывается на сохранении намагниченности, а считывание информации базируется на явлении электромагнитной индукции.

В процессе записи информации на гибкие и жесткие магнитные диски головка дисковода с сердечником из магнитомягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожесткого носителя (большая остаточная намагниченность). На магнитную головку поступают последовательности электрических импульсов (последовательности логических единиц и нулей), которые создают в головке магнитное поле. В результате последовательно намагничиваются (логическая единица) или не намагничиваются (логический нуль) элементы поверхности носителя.

В отсутствие сильных магнитных полей и высоких температур элементы носителя могут сохранять свою намагниченность в течение долгого времени (лет и десятилетий).

При считывании информации при движении магнитной головки над поверхностью носителя намагниченные участки носителя вызывают в ней импульсы тока (явление электромагнитной индукции). Последовательности таких импульсов передаются по магистрали в оперативную память компьютера.

Гибкие магнитные диски. Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращает диск с постоянной угловой скоростью.

При этом магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и производится запись или с которой производится считывание информации. Информационная емкость дискеты невелика и составляет всего 1,44 Мбайт. Скорость записи и считывания информации также мала (составляет всего около 50 Кбайт/с) из-за медленного вращения диска (360 об/мин).

В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие физические воздействия могут привести к размагничиванию носителя и потере информации.

Жесткие магнитные диски. Жесткий магнитный диск представляет собой один или несколько дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с большой угловой скоростью.

За счет гораздо большего количества дорожек на каждой стороне дисков и большого количества дисков информационная емкость жесткого диска может в сотни тысяч раз превышать информационную емкость дискеты и достигать 1 Терабайт. Скорость записи и считывания информации с жестких дисков достаточно велика за счет быстрого вращения дисков (7200 об./мин).

В жестких дисках используются достаточно хрупкие и миниатюрные элементы (пластины носителей, магнитные головки и пр.), поэтому в целях сохранения информации и работоспособности жесткие диски необходимо оберегать от ударов и резких изменений пространственной ориентации в процессе работы.

Оптический принцип записи и считывания информации. В лазерных дисководах CD-ROM и DVD-ROM используется оптический принцип записи и считывания информации.

В процессе записи информации на лазерные диски для создания участков поверхности с различными коэффициентами отражения применяются различные технологии: от простой штамповки до изменения отражающей способности участков поверхности диска с помощью мощного лазера. Информация на лазерном диске записывается на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью.

При соблюдении правил хранения (в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

В процессе считывания информации с лазерных дисков луч лазера, установленного в дисководе, падает на поверхность вращающегося диска и отражается. Так как поверхность лазерного диска имеет участки с различными коэффициентами отражения, то отраженный луч также меняет свою интенсивность (логические 0 или 1). Затем отраженные световые импульсы преобразуются с помощью фотоэлементов в электрические импульсы и по магистрали передаются в оперативную память.

Лазерные дисководы и диски. Лазерные дисководы (CD-ROM и DVD-ROM) используют оптический принцип чтения информации.

На лазерных CD-ROM (CD – Compact Disk, компакт-диск) и DVD-ROM (DVD – Digital Versatile Disk, универсальный цифровой диск) дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна, что отражено во второй части их названий: ROM (Read Only Memory – память только для чтения). Производятся такие диски путем штамповки и имеют серебристый цвет.

Информационная емкость CD-ROM диска может достигать 700 Мбайт, а скорость считывания информации в CD-ROM-накопителе зависит от скорости вращения диска.

DVD-диски имеют гораздо большую информационную емкость (до 17 Гбайт) по сравнению с CD-дисками. Во-первых, используются лазеры с меньшей длиной волны, что позволяет размещать оптические дорожки более плотно. Во-вторых, информация на DVD-дисках может быть записана на двух сторонах, причем в два слоя на одной стороне.

Односторонние однослойные DVD-диски имеют объем 4,7 Гбайт (их часто называют DVD-5, т.е. диски емкостью около 5 Гбайт), двусторонние однослойные – 9,4 Гбайт (DVD-10), односторонние двухслойные – 8,5 Гбайт (DVD-9), а двусторонние двухслойные – 17 Гбайт (DVD-18). В зависимости от объема требующих хранения данных и выбирается тип DVD-диска.

Первое поколение DVD-ROM-накопителей обеспечивало скорость считывания информации примерно 1,3 Мбайт/с. В настоящее время 16-скоростные DVD-ROM-дисководы достигают скорости считывания до 21 Мбайт/с и выше.

Существуют CD-R и DVD-R-диски (R – recordable, записываемый). Информация на такие диски может быть записана, но только один раз. На дисках CD-RW и DVD-RW (RW – Rewritable, перезаписываемый), которые имеют «платиновый» оттенок, информация может быть записана многократно.

Для записи и перезаписи на диски используются специальные CD-RW и DVD-RW-дисководы, которые обладают достаточно мощным лазером, позволяющим менять отражающую способность участков поверхности в процессе записи диска. Такие дисководы позволяют записывать и считывать информацию с дисков с различной скоростью.

Flash-память. Flash-память – это энергонезависимый тип памяти, позволяющий записывать и хранить данные в микросхемах. Карты flash-памяти не имеют в своем составе движущихся частей, что обеспечивает высокую сохранность данных при их использовании в мобильных устройствах (портативных компьютерах, цифровых камерах и др.).

Flash-память представляет собой микросхему, помещенную в миниатюрный плоский корпус. Для считывания или записи информации карта памяти вставляется в специальные накопители, встроенные в мобильные устройства или подключаемые к компьютеру через USB-порт.


 

Билет 7. Программное обеспечение компьютера (системное и прикладное)

Для того чтобы компьютер мог полноценно функционировать, он должен не только быть оснащен различными центральными и периферийными устройствами, отвечающими последним требованиям времени. Для полноценной работы достаточно и более скромного компьютера. Но совершенно невозможно представить его себе без программ, которые, собственно, и делают его полноценным техническим устройством.

Персональные компьютеры – это универсальные устройства для обработки информации. В отличие от телефона, магнитофона или телевизора, осуществляющих только заранее заложенные в них функции, персональные компьютеры могут выполнять любые действия по обработке информации. Для этого необходимо составить для компьютера на понятном ему языке точную и подробную последовательность инструкций (т.е. программу), как надо обрабатывать информацию. Сам по себе компьютер не обладает знаниями ни в одной области своего применения, все эти знания сосредоточены в выполняемых на компьютере программах. Поэтому часто употребляемое выражение "компьютер сделал" (подсчитал, нарисовал) означает ровно то, что на компьютере была выполнена программа, которая позволила совершить соответствующее действие.

Используя различные программы, можно превратить компьютер в рабочее место бухгалтера или конструктора, статистика или агронома, редактировать на нем документы или играть в какую-нибудь игру. Для эффективного использования компьютера необходимо знать назначение и свойства необходимых при работе с ним программ.

Программным обеспечением ЭВМ (в частности, персонального компьютера, далее ПО) называют совокупность программных средств для ЭВМ и их систем любого класса и типа, обеспечивающих функционирование, диагностику и тестирование их аппаратных средств, а также разработку, отладку и выполнение любых задач пользователя, где в качестве пользователя может выступать как человек, так и любое внешнее устройство, подключенное к ЭВМ и нуждающееся в ее ресурсах, а также совокупность необходимых для эксплуатации этих программных средств документов.

Аппаратное (hardware) и программное (software) обеспечение ЭВМ тесно связаны. Основная тенденция здесь такая: более сложные программные продукты требуют более совершенных аппаратных средств.

Основными характеристиками программного обеспечения являются:

  • алгоритмическая сложность;
  • состав и глубина проработки реализованных функций обработки;
  • полнота и системность функций обработки;
  • объем файлов программ;
  • требования к операционной системе и техническим средствам обработки со стороны программного средства;
  • размер оперативной памяти для запуска программ;
  • тип процессора;
  • версии операционной системы, в которой функционирует ПО;
  • использование локальной и/или глобальной сети и др.

Все программное обеспечение ЭВМ можно условно разделить на следующие группы:

  1. Системное (СПО):
    • операционные системы (ОС) (MS-DOS, Windows, Linux и т.д.);
    • утилиты ОС (программы резервирования, антивирусные программы, программы ограничения доступа, архиваторы и др.);
    • оболочки ОС;
    • средства тестирования и диагностики ЭВМ и др.
  2. Прикладное (ППО):
    • пакеты прикладных программ общего назначения (текстовые и графические редакторы, электронные таблицы, системы управления базами данных, приложения для создания мультимедиа-презентаций, коммуникационные (сетевые) программы, компьютерные игры (логические, стратегические, спортивные и т.д.) и др.);
    • проблемно-ориентированные пакеты прикладных программ или приложения специального назначения (системы компьютерной графики, системы автоматизированного проектирования (САПР), бухгалтерские программы, компьютерные словари, системы автоматического перевода, обучающие программы для самообразования или в учебном процессе (программы обучения иностранным языкам, программы-репетиторы, тесты по различным предметам и т.д.), мультимедиа-приложения (энциклопедии, справочники и т.д.) и др.);
    • интегрированные пакеты прикладных программ (например, вместе с ОС Windows поставляются программы для редактирования текстов (Блокнот), рисунков (Paint), калькулятор для вычислений, различные коммуникационные программы, такие как Internet Explorer, Outlook Express и др.);
    • пакеты прикладных программ, расширяющие функции ОС;
    • программное обеспечение пользователя.
  3. Системы программирования или инструментальное (ИПО):
    • компиляторы с языков программирования высокого уровня;
    • интерпретаторы с языков программирования высокого уровня;
    • библиотеки стандартных программ;
    • средства редактирования, отладки и тестирования;
    • прикладные утилиты.

Системное программное обеспечение управляет всеми ресурсами ЭВМ (центральный процессор, память, внешние устройства, и др.) и осуществляет общую организацию процесса обработки информации и взаимодействие с пользователем.

Прикладное программное обеспечение составляют пакеты прикладных программ, предназначенных для решения определенного круга задач пользователем из различных проблемных областей.

Системы программирования (инструментальное программное обеспечение) предназначено для создания оригинальных программных средств в любой проблемной области, в том числе и производства системного программного обеспечения. В недавнем прошлом системы программирования являлись инструментами программистов-профессионалов и позволяли создавать программы на различных языках программирования (Basic, Pascal, C и др.). В настоящее время широкое распространение получили системы визуального программирования (Visual Basic, Borland Delphi и др.), которые позволяют даже начинающему пользователю компьютера создавать несложные программы.

Билет 8. Файловая система компьютера. Папки. Файлы (имя, тип, путь доступа)

Главное назначение носителей внешней памяти – долговременное хранение информации. Любая информация (текст, изображение, программа, видеофильм и т.д.) на внешнем носителе хранится в виде файла. Файл (file) – это поименованная область на диске, в которой хранится отдельный экземпляр информации определенного типа.

Файл характеризуется набором параметров (свойств) (имя, расширение, размер, дата создания, дата последней модификации, время создания и изменения) и атрибутами, используемыми операционной системой для его обработки ("архивный", "системный", "скрытый", "только для чтения", "каталог" и др.).

Файловая структура может быть одноуровневой – это простая последовательность файлов. Многоуровневая файловая структура – древовидный способ организации файлов на диске. При этом существуют специальные файлы, которые в одних операционных системах называют каталогами (directory), в других – папками, назначение которых – регистрация в них файлов (в том числе и других каталогов). Наличие поддержки каталогов в операционной системе позволяет выстроить иерархическую (многоуровневую, древовидную) организацию размещения файлов на носителе. В этом случае файлы, имеющие одинаковую природу (файлы операционной системы, документы, офисные программы, игровые программы, результаты расчетов, домашние задания, рисунки и т.д.), размещаются в отдельных каталогах. Такая структура хранения информации позволяет уверенно ориентироваться в принадлежности той или иной информации, особенно если учесть, что на современных носителях информации могут храниться тысячи, а то и десятки тысяч файлов! Работа с информацией была бы значительно затруднена, если бы она была беспорядочно размещена на носителе.

Любой носитель изначально имеет один каталог, который создается операционной системой без нашего участия, – корневой. Корневой каталог на каждом носителе внешней памяти существует в единственном экземпляре. Все другие каталоги создаются либо пользователем, либо могут быть автоматически созданы программами.

Носители информации обозначаются символами латинского алфавита, после которых следуют две точки: А:, В: – дисководы для гибких дисков (дискет), С: – жесткий диск (винчестер), далее по алфавиту D:, E:, F: и т.д. – жесткие диски, логические диски или дисководы для компакт-дисков и др. по числу дисководов.

На рисунке приведен пример иерархической структуры размещения информации на носителе ("С:\" обозначает корневой каталог диска С:, имена каталогов написаны прописным шрифтом, файлов – строчным).

Пусть в корневом каталоге диска С: имеются два каталога 1-го уровня (GAMES и TEXT), а в каталоге GAMES один каталог 2-го уровня (CHESS). При этом в каталоге TEXT имеется файл proba.txt, а в каталоге CHESS – файл chess.txt.

Полное имя файла однозначно определяет местоположение любого файла на носителе. Оно состоит из пути к файлу, включающему логическое имя устройства и иерархическую систему каталогов, от корневого каталога до того, в котором содержится файл, и собственно имени файла и расширения: C:\GAMES\CHESS\chess.exe.

Правила задания имени файла определяются операционной системой и используемой файловой системой. Каждый файл имеет собственный уникальный адрес.

Для операционной системы данные на дисках организованы в дорожки и секторы. Дорожки (40 или 80 на дискете) представляют собой узкие концентрические кольца на диске. Каждая дорожка разделена на части, называемые секторами. При чтении или записи устройство всегда считывает или записывает целое число секторов независимо от объема запрашиваемой информации. Размер сектора на дискете равен 512 байтам. Количество секторов – 18. Цилиндр – это общее количество дорожек, с которых можно считать информацию, не перемещая головок. Поскольку гибкий диск имеет только две стороны, а дисковод для гибких дисков – только две головки, в гибком диске на один цилиндр приходится две дорожки. В жестком диске может быть много дисковых пластин, каждая из которых имеет две (или больше) головки, поэтому одному цилиндру соответствует множество дорожек. Кластер (или ячейка размещения данных) – наименьшая область диска, которую операционная система использует при записи файла (минимальный размер адресуемого пространства). Обычно кластер – один или несколько секторов.

Перед использованием дискета (жесткий диск) должна быть форматирована, т.е. должна быть создана ее логическая и физическая структура (разбиение диска на дорожки и секторы). Самая первая дорожка магнитного диска (нулевая) считается служебной – там хранится служебная информация – таблица размещения файлов (FAT-таблица). В этой таблице компьютер запоминает адреса записанных файлов. По команде пользователя, компьютер находит по имени файла в этой таблице номер дорожки и номер сектора, после чего магнитная головка переводится в нужное положение, файл считывается и направляется в оперативную память для обработки.

Нетрудно подсчитать общую емкость гибкого диска: 2 (стороны)×80 (дорожек)×18 (секторов)×0,5 байт=1440 Кбайт (1,44 Мбайт). Если вспомнить, что 1 Кбайт равен 1024 байтам, то, более точно, емкость гибкого диска равна 1 457 664 байта.

В операционных системах семейства Windows имя может содержать от 1 до 255 символов, причем набор символов, из которых можно составлять имена файлов, расширяется. В частности, можно использовать буквы национальных алфавитов, пробелы и т.д. Не допускается использование следующих символов: \ / : * ? " < > |. Строчные и прописные буквы в именах файлов не различаются. То же касается и имен файлов (папок в Windows). По другому дело обстоит в операционных системах семейства Unix. Там строчная и прописная буквы различаются, поэтому имена, записанные одними и теми же буквами, но имеющие различия в регистрах, будут разными.

Расширение имени файла записывается после точки и может содержать от 1 до 3 символов в DOS и больше 3 – в Windows. Чаще всего в расширение вкладывается определенный смысл (хотя пользователь может задавать и бессмысленные расширения) – оно указывает на содержимое файла или на то, какой программой был создан данный файл, данные какого типа сохранены в нем. Например:

  • .DOC, .TXT – расширения текстовых файлов,
  • .СОМ, .ЕХЕ – исполнимых файлов,
  • .INI – инициализационных файлов,
  • .PAS, .BAS, .СРР – исходные тексты программ на соответствующем языке программирования, и т.д.

В операционной системе Windows именно по расширению файлы ассоциируются с определенной программой, с помощью которой они могут быть открыты для просмотра или модификации.

Размер файла измеряется в байтах.

В зависимости от значений атрибутов файлов операционная система разрешает или запрещает те или иные действия над файлами.

Виды атрибутов. Для каждого файла соответствующая ему запись в каталоге (элемент каталога) содержит атрибуты файла. DOS может обрабатывать четыре атрибута файлов: "только для чтения" (read-only), "скрытый" (hidden), "системный" (system), и "архивировать" (archive). Каждый из этих атрибутов может быть либо установлен, либо нет.

Назначение этих атрибутов таково:

  • атрибут файла "только для чтения" предохраняет файл от изменений: для изменения или удаления файла с этим атрибутом требуется предварительно снять данный атрибут. Файлы на компакт-дисках имеют атрибут "только для чтения", чтобы показать, что изменить эти файлы нельзя;
  • атрибуты "скрытый" и/или "системный" используются некоторыми системными файлами. Файлы с атрибутом "системный" не перемещаются программами оптимизации расположения файлов на диске, а также обычно не копируются на сжатый диск при создании сжатого диска;
  • атрибут файла "архивировать" устанавливается при создании файла и сбрасывается программами резервного копирования для обозначения того, что копия файла помещена в архив. Поэтому наличие атрибута "архивировать" обычно значит, что для файла не было сделано резервной копии.

Таким образом, большинство файлов имеет установленным только атрибут "архивировать". Остальные атрибуты ("только для чтения", "скрытый" или "системный"), как правило, не установлены.

В операционной системе Windows кроме перечисленных выше атрибутов имеются атрибуты индексирования (с целью ускорения поиска), сжатия, шифрования (только пользователь, зашифровавший файл (или папку) имеет доступ к его содержимому).

Обычно в Windows по отношению к файлам и каталогам используют несколько иную терминологию.

Наиболее простыми являются документы и программы. Документы – это объекты, содержащие ту или иную информацию: тексты, картинки, звуки и т.д. Развитие мультимедийных возможностей компьютера приводит к тому, что в некоторых документах могут содержаться несколько видов информации одновременно, например, движущееся изображение и звук. Программы служат для обработки документов – это своеобразные инструменты воздействия на документы. Часто их еще называют приложениями, например, приложение MS-DOS или приложение Windows, в зависимости от того, ресурсы какой операционной системы использует данная программа. Между отдельными программами и документами существует устойчивая связь: текстовый редактор работает с текстовыми документами, программа-фонограф воспроизводит звуки и т.п. Windows запоминает такие связи и способна самостоятельно их использовать при просмотре и работе с документами. Группа однотипных документов, а также программ для их обработки могут быть помещены в общую папку (аналог каталога). Папка является еще одним, более крупным объектом Windows. В отличие от документов и программ, являющихся простыми и "неделимыми" объектами, папка может содержать другие объекты, в том числе и новые папки; в частном случае папка может быть пустой.

Также файлы можно разделить на исполняемые (программы) и неисполняемые (файлы данных и документов). Исполняемые файлы могут запускаться операционной системой на выполнение, а неисполняемые файлы могут только изменять свое содержимое в процессе выполнения программ. Далее можно разделить файлы на основные, присутствие которых обязательно для работы операционной системы и программных продуктов, служебные, хранящие конфигурацию и настройки основных файлов, рабочие, содержимое которых изменяется в результате работы основных программных файлов и собственно ради которых и создаются все остальные файлы, а также временные файлы, создающиеся в момент работы основных и хранящие промежуточные результаты.

В процессе работы над файлами и каталогами (далее они называются объектами) производят следующие операции:

· создание (в текущем каталоге создается новый экземпляр объекта, ему дается имя. Созданный объект при этом может быть и пустым);

· копирование (копия объекта создается в другом каталоге или на другом носителе);

· перемещение (производит) копирование объекта в другой каталог или на другой носитель, в исходном каталоге объект уничтожается);

· удаление (в исходном каталоге объект уничтожается);

· переименование (изменяется имя объекта).


Дата добавления: 2015-04-18; просмотров: 80; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.035 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты