![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Числовые множества. Ограниченные и неограниченные множества. Верхние и нижние грани множества. Предельные точки множества.Будем рассматривать множества, элементами которых являются числа. Такие множества называются числовыми. Числовые множества задаются на оси действительных чисел R. На этой оси выбирают масштаб и указывают начало отсчета и направление. Наиболее распространенные числовые множества: · · · · Множество всех рациональных чисел является счетным множеством. Счетным является множество всех точек плоскости (пространства) имеющих рациональные координаты. Множество всех действительных чисел является несчетным: оно имеет мощность, называемую континуумом. Некоторое непустое подмножество Всякое число Непустое подмножество В противоположность этому определению, множество Множество, неограниченное как сверху, так и снизу, называется неограниченным множеством. Наименьшую из верхних граней непустого подмножества множества действительных чисел Примем без доказательства утверждение о том, что всякое ограниченное сверху (снизу) множество имеет точную верхнюю (нижнюю) грань. Граничной точкой множества называется точка, у которой в любом содержащем ее открытом промежутке найдутся как точки, принадлежащие множеству, так и точки, не принадлежащие множеству. Сама граничная точка может, как принадлежать множеству, так и не принадлежать ему. Граница множества – совокупность граничных точек множества: · · · множество отрицательных чисел неограничено снизу и ограничено сверху.
|