КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Дифференциалы высших порядков.Пусть у=ƒ(х) дифференцируемая функция, а ее аргумент х — независимая переменная. Тогда ее первый дифференциал dy=ƒ'(х)dx есть также функция х; можно найти дифференциал этой функции. Дифференциал от дифференциала функции у=ƒ(х) называется ее вторым дифференциалом (или дифференциалом второго порядка) и обозначается d2y или d2ƒ(х). Итак, по определению d2y=d(dy). Найдем выражение второго дифференциала функции у=ƒ(х). Так как dx=∆х не зависит от х, то при дифференцировании считаем dx постоянным: d2y=d(dy)=d(f'(x)dx)=(ƒ'(х)dx)'•dx=f"(x)dx•dx=f"(x)(dx)2 т. е. d2y=ƒ"(х)dх2. (24.5) Здесь dx2 обозначает (dx)2. Аналогично определяется и находится дифференциал третьего порядка d3y=d(d2y)=d(ƒ"(х)dx2)≈f'(x)(dx)3. И, вообще, дифференциал n-го порядка есть дифференциал от дифференциала (n-1)-го порядка: dny=d(dn-ly)=f(n)(x)(dx)n. Отсюда находим, что , В частности, при n=1,2,3 соответственно получаем:
т. е. производную функции можно рассматривать как отношение ее дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.
|