КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Свойства бесконечно малых функций.-сумма или разность конечного числа б.м.в. есть б.м.в. (a и b-б.м.в., то a±b=б.м.в.) -произведение б.м.в. на величину ограниченную есть б.м.в. (U<=M, то a*U=б.м.в.) -произведение бесконечно малых величин=б.м.в. -произведение б.м.в. на постоянную = б.м.в Теорема о разложении функции, имеющей предел на постоянную и бесконечно малую функцию. Теорема. Если функция ƒ(х) имеем предел, равный А, то ее можно представить как сумму числа А и бесконечно малой функции α(х), т. е. если limƒ(х)=А, при Х→Хо то ƒ(х)=А+а(х). т. е. |ƒ(х)-А-0|<ε. Это означает, что функция ƒ(х)-А имеет предел, равный нулю, т. е. является б.м.ф., которую обозначим через α(х): ƒ(х)-А=α(х). Отсюда ƒ(х)=А+α(х). Теорема(обратная). Если функцию ƒ(х) можно представить в виде суммы числа А и бесконечно малой функции α(х), то число А является пределом функции ƒ(х), т. е. если ƒ(х)=А+α(х), то lim ƒ(х)=А при Х→Хо
|