Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Основные правила дифференцирования. Сумма.




 

Выведем несколько правил вычисления производных, В этом пункте значения функций u и v и их производных в точке х0 обозначаются для краткости так: u(х0) = u, v(х0) = v, u'(х0) = u', v'(х0)=v`. Если функции u и v дифференцируемы в точке х0, то их сумма дифференцируема в этой точке и

(u+v)' = u' + v'.

 

Коротко говорят: производная суммы равна сумме производных.

1) Для доказательства вычислим сначала приращение суммы функций в рассматриваемой точке: Δ(u+v) = u (х0+Δx)+ v(х0+Δx) – (u(х0)+v(х0)) = (u(х0+Δx)-u(х0)) + (v(х0+Δx)-v(х0)) = Δu + Δv

2)

 

3) Функции u и v дифференцируемы в точке х0, т. е. при Δх→0

 

Тогда

 

при Δх→0 (см. правило 3, а) предельного перехода), т. е. (u+v)' = u'+v’

Лемма. Если функция f дифференцируема в точке х0, то она непрерывна в этой точке: Δf→0 при Δx→0, т. е.

f(х0 + Δх)→f (х0) при Δx→0

.

Действительно,

 

при Δх→0, так как

 

Итак, Δf→0 при Δx→0, т. е. для дифференцируемых функций f (х0 + Δx)→f (х0) при Δх→0.


Поделиться:

Дата добавления: 2015-04-21; просмотров: 166; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты