Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Дифференциал функции. Геометрический смысл.




Дифференциалом dy функции y=y(x) называется главная часть ее приращения, пропорциональная приращению независимой переменно x.
Дифференциал dx независимой переменной x равен ее приращению :

Дифференциал любой дифференцируемой функции y=y(x) равен произведению ее производной на дифференциал независмой переменной:

Если достаточно мало по абсолютной величине, то с точностью до бесконечно малых более высокого порядка, чем , имеет место приближенное равенство .

Инвариантность формы дифференциала.

Дифференциал обладает свойствами, аналогичными свойствам производной:

(С – постоянная величина) (8)

(9)

(10)

(11)

(12)

Формулы (8) – (12) получаются из соответствующих формул для производной умножением обеих частей каждого равенства на .

Рассмотрим дифференциал сложной функции. Пусть - сложная функция :

Дифференциал

этой функции, используя формулу для производной сложной функции, можно записать в виде

Но есть дифференциал функции , поэтому

,

т.е.

(13)

Здесь дифференциал записан в том же виде, как и в формуле (7), хотя аргумент является не независимой переменной, а функцией . Следовательно, выражение дифференциала функции в виде произведения производной этой функции на дифференциал её аргумента справедливо независимо от того, является ли аргумент независимой переменной или функцией другой переменной. Это свойство называют инвариантностью (неизменностью) формы дифференциала.

Подчеркнём, что в формуле (13) нельзя заменить на , так как

для любой функции , кроме линейной.



Поделиться:

Дата добавления: 2015-04-21; просмотров: 143; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты