Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Предел функции в точке. Графическая интерпретация предела.




Читайте также:
  1. A) оформление текста в соответствии с определенными правилами
  2. A. определяет способ
  3. D) определение стратегии развития общества.
  4. D.определение стратегии
  5. Gt; 89. Предмет и функции СО как научной дисциплины и практической области деятельности. (не до
  6. I блок 9. Профессиональное становление личности. Условия эффективного профессионального самоопределения.
  7. II СЕНСОРНЫЕ ФУНКЦИИ
  8. II. Рабочие определения, используемые при анализе литературного произведения
  9. II. Состав, порядок определения баллов оценки качественных критериев и оценки эффективности на основе качественных критериев
  10. II. Структура Системы сертификации ГОСТ Р и функции ее участников

 

Пусть функция у=ƒ (х) определена в некоторой окрестности точки хо, кроме, быть может, самой точки хо.

Сформулируем два, эквивалентных между собой, определения предела функции в точке.

Определение 1 (на «языке последовательностей», или по Гейне).

Число А называется пределом функции у=ƒ(х) в топке x0 (или при х® хо), если для любой последовательности допустимых значений аргумента xn, n є N (xn¹x0), сходящейся к хо последовательность соответствующих значений функции ƒ(хn), n є N, сходится к числу А

В этом случае пишут

или ƒ(х)—>А при х→хо. Геометрический смысл предела функции: означает, что для всех точек х, достаточно близких к точке хо, соответствующие значения функции как угодно мало отличаются от числа А.

Определение 2 (на «языке ε», или по Коши).

Число А называется пределом функции в точке хо (или при х→хо), если для любого положительного ε найдется такое положительное число δ, что для все х¹хо, удовлетворяющих неравенству |х-хо|<δ, выполняется неравенство |ƒ(х)-А|<ε.

Геометрический смысл предела функции:

если для любой ε-окрестности точки А найдется такая δ-окрестность точки хо, что для всех х¹хо из етой δ-окрестность соответствующие значения функции ƒ(х) лежат в ε-окрестности точки А. Иными словами, точки графика функции у=ƒ(х) лежат внутри полосы шириной 2ε, ограниченной прямыми у=А+ ε , у=А-ε. Очевидно, что величина δ зависит от выбора ε, поэтому пишут δ=δ(ε).


Предел функции при

Пусть функция у=ƒ(х) определена в промежутке (-∞;∞). Число А называется пределом функции ƒ(х) при х→∞, если для любого положительного числа ε существует такое число М=М()>0, что при всех х, удовлетворяющих неравенству |х|>М выполняется неравенство |ƒ(х)-А|<ε. Коротко это определение можно записать так:

Геометрический смысл этого определения таков: для "ε>0 $ М>0, что при х є(-∞; -М) или х є(М; +∞) соответствующие значения функции ƒ(х) попадают в ε-окрестность точки А, т. е. точки графика лежат в полосе шириной 2ε, ограниченной прямыми у=А+ε и у=А-ε (см. рис. 112).





Дата добавления: 2015-04-21; просмотров: 17; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты