КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Объем тела и его измерение«Назови пару» Дед Мороз – Снегурочка, Красная шапочка – Серый Волк, Коза – 7 козлят, … Длина – отрезок, площадь – плоская фигура, объем – … Объем– это положительная скалярная величина, характеризующая размер геометрического тела. Объемом тела называется положительная скалярная величина, определенная для каждого геометрического тела так, что: 1. равные тела имеют равные объемы; 2. если тело составлено из нескольких тел, то его объем равен сумме их объемов. Будем объем тела Q обозначать V(Q). Чтобы измерить объем тела, нужно выбрать единицу объема. Таковой является куб со стороной, равной единице длины, его объем равен е3. Измерение объема состоит в сравнении объема данного тела с объемом единичного куба. Результатом этого сравнения является такое число х такое, что V(Q) = х ∙ е3, которое называют численным значением объема при данной единице объема. Свойства численных значений объема 1. Если тела равны, то равны и численные значения их объемов: Q1 = Q2 V(Q1) = V(Q2). 2. Если тело Q состоит из тел Q1, Q2,…, Qn, то численное значение объема тела равно сумме численных значений объемов этих тел. 3. При замене единицы измерения объема численное значение объема увеличивается (уменьшается) во столько раз, во сколько раз уменьшается (увеличивается) единица объема. Выразим, например, 9 дм3 в кубических сантиметрах. Известно, что 1 дм3 = 1000 см3, и, следовательно, 9 дм3 = 9 ∙ 1 дм3 = 9 ∙ (1000 см3) = (9 ∙ 1000) ∙ см3 = = 9000 см3. Для измерения объемов площадей используют стандартные единицы площади: м3, дм3, см3, мм3. Основная единица измерения объема – кубический метр. Соотношения между единицами объема: 10-9 км3 = 1м3 = 103дм3 = 106 см3 = 109 мм3. В начальной школе рассматривается объем прямоугольного параллелепипеда. Рассмотрим случай, когда длина, ширина и высота выражены натуральными числами. Если стороны основания равны а и b, то на это основание можно уложить а ∙ b единичных кубиков. Так как в высоту укладывается с таких слоев, то объем параллелепипеда вычисляется по формуле V = а ∙ b∙ с. Таким образом объем прямоугольного параллелепипеда равен произведению трех его измерений. В начальной школе изучается также такая величина, как емкость. Она рассматривается как объем сыпучих и жидких тел. Единица измерения емкости – литр. 1 л = 1 дм3. Измерить объемы тел более трудно, чем площадь фигур. Приведем несколько способов измерения объемов. 1. Правило Архимеда. Объем воды, вытесненной телом при погружении, равен объему этого тела. 2. Косвенный способ измерения объема. · Посредством измерения длин сторон и других отрезков и нахождения площади с помощью формул. · Нахождение объем через массу и плотность тела. 3. Метод дополнения (разбиения). 4. Объем (емкость) сосудов – с помощью наполнения.
|