Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Алгоритм решения




Читайте также:
  1. A) Словесный, графический, формально - словесный, алгоритмический язык
  2. D7 с ОБРАЩЕНИЯМИ и РАЗРЕШЕНИЯМИ
  3. I. Порядок заполнения формы разрешения на строительство
  4. Аксиомы аналитико-иерархического процесса. Общая оценка АИП как метода принятия решения.
  5. Алгоритм
  6. Алгоритм
  7. Алгоритм 2.
  8. Алгоритм apriori
  9. АЛГОРИТМ АНАЛИЗА ПЕДАГОГИЧЕСКОЙ СИТУАЦИИ
  10. Алгоритм БПФ.
  1. На основе условия задачи устанавливаем показатель, который является осредняемым признаком. По условию задачи необходимо вычислить среднюю выработку работника, следовательно, осредняемым признаком является выработка работника.
  2. Записываем определяющее соотношение. Выработка работника – это количество продукции, произведенное одним работником, следовательно, определяющее соотношение будет следующим:

    Выработка = Объем производства
    работника Количество работников

  3. Проверяем правильность записи соотношения на основе единиц измерения:
    шт./чел. = [тыс. шт.] / [тыс. чел.]
  4. Вводим обозначения:
    Выработка работника - xi;
    Объем производства - wi;
    Количество работников - fi;
    i - № предприятия
  5. Устанавливается: какие значения показателей в определяющем соотношении по каждой выделенной группе (каждому предприятию) известны, а какие – нет.
    В табл. 3.1. по каждому предприятию приводятся значения выработки работника (xi) и объем производства продукции(wi). Количество работников (fi) по условию задачи не известно и данный показатель надо найти.
  6. Количество работников (fi) находим из определяющего соотношения:



    ;
  7. На основе данных по отдельным предприятиям определяем по трем предприятиям в целом:
    Объем производства продукции
    Численность работников
  8. Вычисляется среднее значение показателя по формуле: ;
  9. Проверяется правильность расчета среднего значения показателя на основе неравенства:
    ;
    Следовательно, в расчетах не было допущено грубой ошибки;
  10. Делаем вывод.
    Средняя выработка работника на трех предприятий в целом составила 11,81 шт./чел., причем на первом предприятии выработка ниже средней, а на втором и третьем – выше средней. Следовательно, снижение доли работников на первом предприятия приведет к увеличению средней выработки, а на втором и третьем – к ее снижению. Более значительно среднюю выработку превосходит выработка на третьем предприятии.

На втором предприятии выработка превосходит среднюю на 12-11,81=0,19 шт./чел. или на а на третьем – на

13-11,81=1,19 шт./чел. или на
Более значительно среднюю выработку превосходит выработка на третьем предприятии, поэтому при равном снижении доли работников на втором и третьем предприятиях на снижение средней выработки окажет третье предприятие.



 


Дата добавления: 2015-07-26; просмотров: 4; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2020 год. (0.004 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты