КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Неприводимый многочлен, его свойстваМногочлен называется неприводимым над числовым полем, если он не делится на многочлены меньшей степени (исключая константы) с коэффициентами из этого поля. Многочлен над числовым полем единственным образом раскладывается в произведение неприводимых многочленов, с точностью до перестановки сомножителей и числовых множителей. Многочлены первой степени неприводимы над любым числовым полем. Число a называется корнем многочлена, если f(a)=0. Многочлен степени n имеет не более n корней. Приведем свойства неприводимых многочленов A. Если h неприводимый многочлен и fg делится на h, то либо f делится на h, либо g делится на h B. Если h неприводимый многочлен, то либо f взаимно просто с h, либо f делится на h C. Если неприводимый многочлен f делится на многочлен h, то , где - число D. Пусть - неприводимые многочлены и , , тогда и .
|