Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Бесконечно большая и бесконечно малая функции




Пусть определена в некоторой окрестности точки . Определение бесконечно большой функции при см. в [1, с. 114].

Обозначение: . Запишем определение коротко:

.

Геометрический смысл определения: для любой окрестности бесконечно удаленной точки найдется такая -окрестность точки , что для всех точек этой окрестности, кроме точки , соответствующие значения функции лежат в окрестности , т. е. точки графика лежат выше прямой и ниже прямой (рис. 1.5).

Если функция стремится к бесконечности при , принимая только положительные значения, то пишут , а если, принимая лишь отрицательные значения, то пишут .

Пусть функция определена на всей числовой оси. Определение бесконечно большой функции при см. в [1, с. 114].

Обозначение: . Коротко:

Геометрический смысл определения: для любой окрестности бесконечно удаленной точки оси найдется такая окрестность бесконечно удаленной точки оси , что как только точка попадает в эту окрестность, так сразу соответствующие значения функции лежат в окрестности , т. е. точки графика лежат выше прямой и ниже прямой (рис. 1.6).

Определение [1, с. 115]. Функция называется бесконечно малой при (включая бесконечность), если .


Поделиться:

Дата добавления: 2015-07-26; просмотров: 136; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты