Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Распространение потенциала действия по миелинизированным волокнам




Читайте также:
  1. I. Распространение потенциала действия по безмякотным нервным волокнам.
  2. II. МОТИВЫ СОЦИАЛЬНОГО ДЕЙСТВИЯ
  3. II. Сальтаторное распространение потенциала действия вдоль миелинового нервного волокна.
  4. Q]3:1:Приостановление действия СМИ допускается сроком не более
  5. SCADA-система. ОРС. Организация взаимодействия с контроллерами.
  6. Автотрансформаторы, особенности конструкции, принцип действия, характеристики
  7. Аккультурация в межкультурных взаимодействиях
  8. Акты и действия, посягающие на свободу конкуренции и предпринимательства на рынке.
  9. Алгоритм действия мед. Сестры при проведении УВЧ терапии.
  10. Алгоритм действия медсестры при проведении УВЧ терапии.

Не покрытые миелиновой оболочкой аксоны строят нервную систему беспозвоночных животных. Аксон позвоночных покрыт миелиновой оболочкой, которая разделяется промежутками - перехватами Ранвье. Такое строение аксона увеличивает скорость распространения потенциала действия во много раз (до 100 м/с у человека). Рассмотрим эту ситуацию подробнее.

Строение миелинизированного аксона схематично представлено на рис. 1.11.

На участках аксона, покрытых миелином, мембрана полностью изолирована и не имеет контакта с межклеточной жидкостью, содержащей ионы Na+, вследствие чего потенциал действия здесь формироваться не может, даже если потенциал мембраны превышает критический потенциал возбуждения.

Рис. 1.11 Строение миелинизированного аксона

 

Потенциал действия может сформироваться только в перехватах Ранвье, где мембрана имеет необходимый контакт с межклеточной жидкостью. Допустим, что какой-то из перехватов Ранвье возбужден, т.е. деполяризован до потенциала jmax. Тогда под действием разности потенциалов (jmax - j0) между возбужденным и невозбужденным участками, фактически между соседними перехватами Ранвье, в аксоплазме и на наружной стороне мембраны возникают локальные токи, благодаря которым потенциал действия с большой скоростью распространяется вдоль аксона. Такой процесс распространения потенциала действия называют сальтаторным (скачкообразным): распространяясь, он как бы перескакивает из одного перехвата Ранвье на другой.

Проведение нервного импульса по аксонам в какой-то степени аналогично тому, как передаются электрические сигналы по кабельно-релейной линии. Электрический импульс передается без затухания из-за его усиления на промежуточных релейных станциях, роль которых в аксонах выполняют участки возбудимой мембраны, где генерируются потенциалы действия. Рассмотрим этот процесс более подробно. Дело в том, что по мере удаления от возбужденного участка аксона мембранный потенциал уменьшается по экспоненциальному закону (рис. 10,б). Когда распространяющийся по миелиновому волокну затухающий мембранный потенциал достигнет следующего перехвата Ранвье и превысит jкр, то за счет действия локальных токов в мембране этого перехвата открываются Na+ -каналы и генерируется полноценный потенциал действия. Таким образом происходит усиление распространяющегося по аксону затухающего местного потенциала до его максимального значения jmax. Далее весь процесс повторяется, причем потенциал действия последовательно генерируется лишь в перехватах Ранвье, а на миелинизированных участках аксона происходит его распространение с затуханием, но с большой скоростью благодаря чему достигается высокая скорость передачи возбуждения по нерву.



И в случае миелинизированных аксонов скорость распространения потенциала действия возрастает с увеличением их диаметра. Она также растет увеличением плотности Na+ - каналов. В перехватах Ранвье их плотность примерно в 100 раз больше, чем в безмиелиновых волокнах. Ещё одна причина скорости проведения потенциала действия – весьма высокий в этом случае градиент концентрации Na+ на мембране.

Именно с помощью потенциала действия в живом организме передается информация от рецепторов к нервным клеткам (нейронам) мозга и от них к мышцам и железистым органам. Их возбуждение является “командой” к действию – к сокращению мышц или к активизации секреторной работы желез внутренней секреции.



Высокая скорость проведения и малый диаметр миелинизированных аксонов привели к созданию у позвоночных, в том числе у человека, большого количества параллельных быстропроводящих нервных путей, а это обеспечило высокую степень надежности передачи информации по нервной системе.
5. Элементы биофизики мышечного сокращения.

В данном параграфе для демонстрации “работы” потенциала действия используется конкретный пример: качественно рассматривается биофизика поведения клетки скелетной мышцы.

Дело в том, что мышечные клетки отличаются от других возбудимых клеток таким специфическим свойством как сократимость, иначе. отличаются способностью генерировать механическое напряжение и укорачиваться. Это свойство мышечных клеток, известное как мышечная активность, обеспечивает работу многих органов и целых систем: работу опорно-двигательного аппарата, легких, сердца, желудочно-кишечного тракта и т.д. Для того чтобы понять механизм мышечного сокращения необходимы определенные сведения о строении мышц и о процессе, который в биофизике принято называть электромеханическим сопряжением в мышцах.

Различают два основных типа мышц: поперечно-полосатые (прикрепляются к различным частям скелета, поэтому их также называют скелетными мышцами) и гладкие (миокард, стенки внутренних органов, кровеносных и лимфатических сосудов и др.).

Рассмотрим особенности строения мышц и механизм их сокращения на примере поперечно-полосатой мышцы.

 


Дата добавления: 2015-07-26; просмотров: 14; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты