![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Производная и дифференциал высшего порядка.Т.к. y’ сама является функцией, то естественно поставить вопрос о наличии ее производной, т.е. (y’)’. Все это можно обобщить определением: производная от производной порядка n-1 называется производной порядка n. Соответственно записывают символ такой производной y(n)=(y(n-1))’. Если использовать для обозначения символ дифференциала, то получим иные обозначения производной порядка n. y(n)= Из этого определения вытекают и все свойства такой производной. Рассмотрим несколько частных случаев производной порядка n. Пусть y=uv. Тогда y’=u’v+v’u. Затем y’’=u’’v+2u’v’+v’’u. Обобщаем и получаем (uv)(n) =u(n) v+n u(n-1) v’+ Пусть функция задана параметрически y’’=(y’)’= Можно поступить иначе y’’=(y’)’=
|