Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Запись и округление результата измерения




Читайте также:
  1. A) запись?
  2. AAAA-запись - задает преобразование имени хоста в IPV6-адрес.
  3. F) двойная запись.
  4. V1:» тема: Таксационные измерения
  5. А) Включение установки и подготовка ее к измерениям.
  6. Анализ финансового положения предприятия. Структура и порядок формирования финансового результата.
  7. Аэрометрический канал измерения скорости, числа Маха. Математическая модель измерителей приборной скорости и числа Маха
  8. Б-12. Видеозапись как средство фиксации криминалистически значимой информации. Применение видеозаписи при производстве следственных действий.
  9. Билет 11. Информация. Свойства информации. Единицы измерения количества информации
  10. Билет 9. Линейный алгоритм. Графические элементы для создания блок-схемы алгоритма. Запись арифметического выражения в языке программирования.

Погрешность результата рассчитывается по случайной выборке, и сама содержит погрешность. Новое измерение (новая выборка) даст новую погрешность, отличную от первой. Можно считать, что объек­тивную информацию о величине погрешности несут лишь одна – две зна­чащие цифры в её численном выражении. Остальные значащие цифры можно считать случайными. Результат измерения также содержит лишь ограниченное число значащих цифр, несущих информацию о величине этого результата. В связи с этим числовые значения результата и погрешности должны быть округлены. При округлении используют сле­дующие правила:

1. Предварительно результат и погрешность записывают в нор­мальном виде: общий показатель степени выносят за скобку или за­меняют соответствующей приставкой: микро, милли, кило, мега и др. Например,

x = 0.22 ± 0.03 м = (22 ± 3)·10–2 м = 22 ± 3 см.

Запрещены записи вида x = 22·10–2 ± 30·10–3 м или x = 0.22 ± 3·10–2 м. Показатель 101 не выносится.

2. Если результат будет в дальнейшем использован в вычислениях, то во избежание накопления погрешностей за счет округлений пог­решность округляют до двух значащих цифр при любой первой. При промежуточных вычислениях величин и (из которых впоследствии будет извлекаться квадратный корень для нахождения и ) следует сохранять не менее четырех значащих цифр.

3. Если результат измерения является окончательным и не будет использован в вычислениях других величин, то доверительную пог­решность Dx округляют до первой значащей цифры, если она равна или больше 2, или до двух значащих цифр, если первая равна 1.

4. Среднее значение x округляют до того разряда, которым оканчивается округленная погрешность Dx:

Неокругленный результат Округленный результат
1237.2 ±32 (12.4 ± 0.3)·102
(7.854 ± 0.0476) ·10–3 (7.85 ± 0.05) ·10–3
83.2637 ± 0.0126 83.264 ± 0.013
2.48 ± 0.931 2.5 ± 0.9
2.48 ± 0.96 2.5 ± 1.0

Если погрешность округляется до двух значащих цифр, но вто­рая из них равна нулю, то этот нуль сохраняется, а в соответствующем ему разряде результата записывается получающаяся там значащая цифра: x = 3.48 ± 0.10.

2.11. Алгоритм обработки данных прямых измерений
по выборке

1. Устранить из выборки очевидные промахи (описки).



2. Из результатов измерений исключить известные систематические погрешности.

3. Упорядочить выборку в порядке возрастания ее элементов.

4. Провести проверку выборки на наличие грубых погрешностей и ее связность по размаху выборки: xi+1xi < UP, N R, i=1…N–1 или только на наличие грубых погрешностей по отклонению наиболее отстоящего результата наблюдения x1 от среднего значения : |x1 | > vP, N Sx, где .

5. Вычислить выборочное среднее .

6. Вычислить выборочное СКО среднего: .

7. Задаться доверительной вероятностью P в диапазоне 0.9…0.99. Как правило, для технических приложений (в том числе в данном курсе) принято выбирать P = 0.95.

8. Определить случайную погрешность Dx = tP, N S , где tP, N – коэффициент Стьюдента. Значения t95 %, N для некоторых N приведены в приложении.

9. Определить оценочное значение случайной погрешности по размаху выборки Dx = bP, N R. Значения случайных погрешностей, рассчитанные разными способами, должны примерно совпадать.

10. Определить верхнюю границу погрешности прибора .

11. Рассчитать полную погрешность результата измерения: .



12. Вычислить относительную погрешность dx = (Dx/ )×100 %.

13. Округлить числовые значения полной погрешности и результата измерения.

14. Записать окончательный результат в виде:

.

15. Свести результаты расчетов в таблицу.

xi 15.8 15.7 16.1 16.0 15.9 θx = 0.2
x↑i 15.7 15.8 15.9 16.0 16.1 = 15.9, R = x↑N x↑1 = 0.4
Ui = xi+1 xi 0.1 0.1 0.1 0.1 Ui < UP, N R = 0.64.0.4 = 0.256
Δxi = xi –0.2 –0.1 0.1 0.2 ∑Δxi = 0
xi)2 0.04 0.01 0.01 0.04 ∑(Δxi)2 = 0.1000
                   

= 0.0707,

, , ,

, ,

.

Контрольные вопросы

1. Что такое наблюдение и результат наблюдения?

2. Что такое выборка и объем выборки?

3. Что такое генеральная совокупность?

4. Что понимают под выборочным средним, под результатом измерения?

5. Как рассчитываются среднеквадратичное отклонение результата наблюдения и СКО среднего? Что эти величины характеризуют?

6. Какую выборку называют ранжированной (упорядоченной)? Имеет ли смысл проверять некрайние элементы упорядоченной выборки на промахи?

7. Как рассчитывают приборную погрешность при известном и неизвестном классах точности прибора? Что понимают под классом точности прибора?

8. Как определяются приборные погрешности, когда на приборе класс точности указан числом, обведенным в кружок? Как определяются приборные погрешности, когда на приборе класс точности указан просто числом?

9. Какие величины задаются произвольно экспериментатором в процессе расчета случайной погрешности?



10. Что произойдет с доверительным интервалом при выборе большей доверительной вероятности?

11. Как складываются друг с другом случайные и приборные погрешности?


Дата добавления: 2015-08-05; просмотров: 20; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты