Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Математическое введение в теорию цепей Маркова




Дискретные цепи Маркова.

Задана дискретная цепь Маркова, если для последовательности случайных величин выполняется равенство

.

Это означает, что поток случайных величин определяется только вероятностью перехода от предыдущего значения случайной величины к последующему. Зная начальное распределение вероятностей, можно найти распределение на любом шаге. Величины in можно интерпретировать как номера состояний некоторой динамической системы с дискретным множеством состояний. Если вероятности переходов не зависят от номера шага, то такая цепь Маркова называется однородной и ее определение задается набором вероятностей .

Для однородной Марковской цепи можно определить вероятности перехода из состояния i в состояние j за m шагов

Цепь Маркова называется неприводимой, если каждое ее состояние может быть достигнуто из любого другого состояния. Состояние i называется поглощающим, если для него pii =1.

Состояние называется возвратным, если вероятность попадания в него за конечное число шагов равна единице. В другом случае состояние относится к невозвратным. Возвратное состояние может быть периодическими апериодическим в зависимости от наличия кратных шагов возврата. Введем вероятности возврата в состояние i через n шагов после ухода из этого состояния:

Они позволяют определить среднее число шагов, т.е среднее время возврата: .

Состояние называется возвратным нулевым, если среднее время возвращения в него равно бесконечности, и возвратным ненулевым, если это время конечно.

Теорема 1.

Состояния неприводимой цепи Маркова либо все невозвратные, либо все возвратные нулевые, либо все возвратные ненулевые. В случае периодической цепи все состояния имеют один и тот же период.

Вторая теорема рассматривает вероятности достижения состояний в стационарном (то есть не зависящем от начального распределения вероятностей) режиме.

Теорема 2.

Для неприводимой и апериодической цепи Маркова всегда существуют предельные вероятности, не зависящие от начального распределения вероятностей. Более того, имеет место одна из следующих двух возможностей:

А) все состояния цепи невозвратные или все возвратные нулевые, и тогда все предельные вероятности равны нулю и стационарного состояния не существует;

Б) все состояния возвратные ненулевые и тогда существует стационарное распределение вероятностей:

Состояние называется эргодическим, если оно апериодично и возвратно ненулевое. Если все состояния цепи Маркова эргодичны, то вся цепь называется эргодической. Предельные вероятности эргодической цепи Маркова называют вероятностями состояния равновесия, имея в виду, что зависимость от начального распределения вероятностей полностью отсутствует.

Цепь Маркова с конечным числом состояний (конечная цепь), удобно изображать в виде ориентированного графа, называемого диаграммой переходов (рис.1). Вершины графа ассоциируются с состояниями, а ребра с вероятностями переходов.

Вычисления вероятностей достижения состояний производится прямыми методами или с помощью z-преобразования.

Рис. 1. Цепь Маркова.

 

У однородных Марковских процессов вероятности переходов не зависят от времени.

Вероятности перехода системы из состояния i на m-том шаге в состояние j на n-том шаге для n > m.

Эти вероятности связаны между собой, так называемым уравнениями Чепмена-Колмогорова.(Chapman - Kolmogorov)

.

Для однородных цепей Маркова эти уравнения упрощаются так

.

Классификация систем массового обслуживания.Используется трех -, четырех -, шести – компонентное символическое обозначение системы массового обслуживания, предложенное Кендаллом (Candall) и развитое в работах Г.П.Барашина.

a/b/c :d/e/f

a –распределение поступающего потока запросов.

b– закон распределения времени обслуживания.

Типовые условные обозначения:

М – экспоненциальное (Марковское) распределение,

D – детерминированное распределение,

Ek – эрланговское распределение k-го порядка,

HMk – гиперэкспоненциальное,

HEk – гиперэрланговское распределение порядка k,

GI – произвольное распределение независимых промежутков между заявками,

G – произвольное распределение длительностей обслуживания.

c –структура системы обслуживания (обычно число серверов).

d –дисциплина обслуживания (параметры после двоеточия иногда опускают).

Обычно используется сокращенное символическое обозначение, например FF вместо FIFO, LF, PR и т.п.

e –максимальное число запросов, воспринимаемое системой, может употребляться символ ¥.

f –максимальное число запросов к системе обслуживания.

2) Система типа G/G/1

Система типа G/G/1-этот класс систем предполагает, что как распределение интервалов времени между поступлением входных заявок-требований, так и распределение времени обслуживания в сервере описываются произвольными функциями плотности вероятности. Обозначим функцию плотности вероятности входного потока заявок a(t), а функцию плотности вероятности времени обслуживания b(x). Рассмотрим последовательность поступающих заявок на обслуживание - требований, пронумерованных индексами и вспомним обозначения, введенные ранее.

Cn - n-е требование, поступающее в систему,

tn- промежуток времени между поступлениями n-го и n-1 требований, плотность вероятности a(t) - не зависит от n.

xn - время обслуживания n-го требования, плотность вероятности b(x) -также не зависит от n,

wn - время ожидания n- го требования в очереди.

Рис. 1 Случай, когда требование Cn+1 поступает в занятую систему.

Рис. 2 Случай, когда требование Cn+1 поступает в свободную систему.

3. Задача. Межузловая ветвь вторичной сети связи имеет n = 7 каналов. Поток сообщений, поступающих для передачи по каналам ветви связи, имеет интенсивность  = 16 сообщений в секунду. Среднее время t = 0,4 передачи одного сообщения равно t/n = 0,06 секунд. В накопители очереди ожидающих передачи сообщений может находиться до m = 8 сообщений. Сообщение, прибывшее в момент, когда все m мест в очереди заняты, получает отказ передачи по ветви связи. Найти характеристики СМО: Ротк ,Q ,А ,Z ,Lоч ,Тож , Тсист .

 


Поделиться:

Дата добавления: 2015-09-15; просмотров: 163; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты