Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Применение текущей стоимости




Читайте также:
  1. R затраты на производство для оценки себестоимости отдельных видов произведенной продукции и остатков незавершенного производства
  2. Анализ себестоимости (общий)
  3. Анализ себестоимости услуг (затрат) гостиничного хозяйства
  4. Анализ текущей стоимости для нескольких периодов
  5. Без учёта стоимости гистологического исследования
  6. БОЕВОЕ ПРИМЕНЕНИЕ
  7. БОЕВОЕ ПРИМЕНЕНИЕ
  8. БОЕВОЕ ПРИМЕНЕНИЕ
  9. В каких электроустановках и какие работы могут выполняться в порядке текущей эксплуатации?
  10. В стоимости: Будапешт, Вена, Прага, Чешский Крумлов!

 

Начнем с формулирования важного общего принципа: использование текущей стоимости есть единственно правильный способ превращения потока платтеежй в сегодняшние доллары. Этот принцип вытекает непосредственно из определения текущей стоимости: текущая стоимость измеряет стоимость начального запаса денег потребителя. До тех пор, пока потребитель может свободно брать и давать деньги взаймы по постоянной ставке процента, начальный запас с более высокой текущей стоимостью всегда может вызвать в каждом периоде больше потребления, чем начальный запас с более низкой текущей стоимостью. Независимо от ваших вкусов в отношении потребления в различных периодах, вы всегда должны будете предпочесть поток денег с более высокой текущей стоимостью потоку денег с более низкой текущей стоимостью - так как это всегда даст вам больше возможностей для потребления в каждом периоде.

Это рассуждение иллюстрируется рис. 10.6. На этом рисунке ( ) есть потребительский набор, худший, чем набор исходного начального запаса потребителя, ( ), поскольку он лежит под кривой безразличия, проходящей через точку начального запаса. Тем не менее, потребитель предпочел бы набор ( ) набору ( ), если бы имел возможность брать и давать взаймы по ставке процента r. Это верно потому, что, имея набор начального запаса ( ), он может себе позволить потреблять такой набор, как ( ), который, несомненно, лучше, чем его текущий потребительский набор.

 

Таблица 10.1Текущая стоимость одного доллара, полученного через t лет в будущем

Ставка
0,05 0,95 0,91 0,78 0,61 0,48 0,37 0,30 0,23
0,10 0,91 0,83 0,62 0,39 0,24 0,15 0,09 0,06
0,15 0,87 0,76 0,50 0,25 0,12 0,06 0,03 0,02
0,20 0,83 0,69 0,40 0,16 0,06 0,03 0,01 0,00

 

Одно из очень полезных применений текущей стоимости заключается в определении стоимости потоков дохода, приносимых инвестициями различного вида. Если вы хотите сравнить два различных вида инвестиций, приносящих разные потоки платежей, с целью выяснения, который из них лучше, то вы просто исчисляете две текущих стоимости и выбираете большую. Вложение с большей текущей стоимостью всегда дает вам больше возможностей для потребления.



Иногда возникает необходимость приобретения потока дохода путем осуществления выплат с течением времени. Например, можно купить квартиру, заняв деньги в банке и производя платежи по закладной в течение ряда лет. Предположим, что поток дохода ( ) можно купить, производя поток платежей ( ).

В этом случае можно дать оценку рассматриваемого вложения капитала, сравнив текущую стоимость потока доходов с текущей стоимостью потока платежей. Если

 

(10.4)

 

 

текущая стоимость потока доходов превышает текущую стоимость издержек на их получение, это - хорошее вложение капитала - оно увеличит текущую стоимость начального запаса.

 

Рис. 10.6 Более высокая текущая стоимость. Начальный запас с более высокой текущей стоимостью дает потребителю больше возможностей потребления в каждом периоде, если потребитель может брать и давать взаймы по рыночным ставкам процента.

 

Эквивалентным способом оценки капиталовложений является использование идеи чистой текущей стоимости. Чтобы подсчитать эту величину, мы рассчитываем чистый поток денежной наличности в каждом периоде, а затем дисконтируем этот поток, приводя его к настоящему моменту. В рассматриваемом примере чистый поток наличности составляет ( ), а чистая текущая стоимость есть



 

.

 

Сравнивая это выражение с уравнением (10.4), мы видим, что данное вложение капитала имеет смысл сделать только, и только в том случае, если величина чистой текущей стоимости положительна.

Подсчет чистой текущей стоимости очень удобен, поскольку он позволяет нам в каждом периоде складывать все положительные и отрицательные потоки денежной наличности и затем дисконтировать полученный в результате этого сложения поток наличности.

 

ПРИМЕР: Определение текущей стоимости потока платежей

 

Предположим, что перед нами два варианта вложений капитала, A и B. Вложение A приносит 100$ сейчас и еще 200$ в будущем году. Вложение B приносит 80$ сейчас и 310$ в будущем году. Какое вложение капитала лучше?

Ответ зависит от ставки процента. Если ставка процента равна нулю, ответ ясен - достаточно сложить инвестиции. Ведь если процентная ставка равна нулю, то расчет текущей стоимости сводится к суммированию платежей.

При нулевой ставке процента текущая стоимость вложения A есть

 

,

 

а текущая стоимость вложения B есть

 

,

 

поэтому следует предпочесть вложение A.

Однако, при достаточно высокой ставке процента мы получим противоположный ответ. Допустим, например, что эта ставка равна 20 процентам. Тогда расчет текущей стоимости принимает вид

 

 

.

 



Теперь лучшим вложением оказывается A. Тот факт, что вложение A позволяет вернуть больше денег раньше, означает, что при достаточно большой ставке процента текущая стоимость этого вложения будет выше.

 

ПРИМЕР: Истинная стоимость кредитной карточки

 

Заем денег с помощью кредитной карточки - дело дорогостоящее: многие компании называют годичные процентные начисления в размере от 15 до 21 процента. Однако, из-за способа, которым эти финансовые начисления подсчитываются, реальные ставки процента оказываются много выше названных.

Предположим, что владелец кредитной карточки дебетует покупку на сумму в 2000$ в первый день месяца и что финансовое начисление составляет 1,5 процента в месяц. Если к концу месяца потребитель выплачивает сальдо целиком, то он не должен выплачивать финансовое начисление. Если же потребитель не выплачивает ни цента из суммы в 2000$, ему придется выплатить в начале следующего месяца финансовое начисление в размере .

Что произойдет, если потребитель выплатит 1800$ против сальдо в 2000$ в последний день месяца? В этом случае потребитель занял только 200$, так что финансовое начисление должно бы составить 3$. Однако, многие компании, занимающиеся кредитными карточками, начисляют потребителям гороздо большие суммы. Причина состоит в том, что многие компании основывают свои начисления на "среднемесячном сальдо", невзирая на то, что часть этого сальдо выплачивается к концу месяца. В нашем примере среднемесячное сальдо составило бы около 2000$ (30 дней с 2000-долларовым сальдо и 1 день с 200-долларовым сальдо). Таким образом, финансовое начисление было бы чуть меньше 30$, несмотря на то, что потребитель занял лишь 200$. Если основываться на фактически взятой взаймы сумме денег, то такое начисление соответствует процентной ставке в размере 15 процентов в месяц!


Дата добавления: 2015-09-14; просмотров: 5; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.016 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты