Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Решение. Так как данный сигнал – периодическая функция времени, то для его спектрального представления нужно использовать или тригонометрический или комплексный ряд




 

Так как данный сигнал – периодическая функция времени, то для его спектрального представления нужно использовать или тригонометрический или комплексный ряд Фурье. Найдем спектры амплитуд и фаз на основе тригонометрического ряда Фурье.

Определим коэффициенты разложения сигнала на интервале t:= 0..T при угловой частоте основной гармоники ω1:= и числе гармоник k:= 1..5.

1) Постоянная составляющая

2) Косинусоидальный коэффициент

Подстановка численных значений Vm, T и ω1 дает

В результате интегрирования получим

Например, a1 = 0 volt; a2 = 0 volt; a3 = 0 volt; a4 = 0 volt.

Более удобна другая форма определения коэффициентов разложения.

Так как

то выражая t0 и ω1 через T, имеем

Отсюда следует, что при k>0 коэффициенты ak равны нулю.

3) Cинусоидальный коэффициент

Выражая t0 и ω1 через T, можно получить

Отсюда после упрощений следует

Амплитуда k-й гармоники

при k>1 будет

Таким образом, с учетом постоянной составляющей амплитудный спектр

Фазовый спектр

Так как коэффициенты ak=0 и bk<0, и составит, например для k=1, φ = 1.571.

Графики данных спектров в виде столбчатых диаграмм приведены на рисунке 2.

 


Поделиться:

Дата добавления: 2015-02-10; просмотров: 109; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты