Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Общие понятия. В теории изгиба расчет на прочность балок дополняется расчетом на жесткость

Читайте также:
  1. I. ОБЩИЕ ПОЛОЖЕНИЯ
  2. I. Общие правила
  3. I. Общие правила
  4. I. Общие принципы фармацевтической опеки.
  5. I. Общие требования
  6. I. ОБЩИЕ УКАЗАНИЯ.
  7. I. Общие.
  8. II ОБЩИЕ НАЧАЛА ПУБЛИЧНО-ПРАВОВОГО ПОРЯДКА
  9. II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  10. II.5.2) Порядок образования и общие черты магистратуры.

В теории изгиба расчет на прочность балок дополняется расчетом на жесткость. При этом оценивается упругая податливость балки и определяются такие её размеры, при которых возникающие деформации не превышали бы допустимых пределов. Тогда условие жесткости можно представить в таком виде:

где fmax – максимальная расчетная деформация (линейная или угловая);

[f] – допускаемая деформация.

Рассмотрим основные параметры деформированного состояния нагруженной балки (рисунок 2.1).

Упругая линия (у.л.) – искривленная ось балки под действием нагрузки.

Прогиб (y) –– линейное перемещение центра тяжести сечения, отсчитываемое перпендикулярно к исходной оси балки, м.

Горизонтальное смещение (u) балки, обычно бесконечно малая величина, принимаемая равной 0.

Угол поворота (θ) – угловое перемещение сечения относительно начального положения (иногда может определяться как угол между касательной к упругой линии и исходной осью), град, рад.

При изгибе балки для линейных и угловых перемещений (y и θ) принимают следующие правила знаков (рисунок 2.2):

- прогибy считается положительным, если перемещение точки происходит вверх, т.е. в направлении оси у;

- угол поворота θ считается положительным при повороте сечения против часовой стрелки (это справедливо для правой системы координат, для левой-наоборот).

Между прогибом и углом поворота существует дифференциальная зависимость, которую можно получить рассматривая бесконечно малые координаты некоторой плоской кривой (рисунок 2.3).

(2.2)

На основании (2.3) угол поворота в данном сечении равен производной прогиба по абсциссе сечения.

Таким образом, для нахождения линейных или угловых деформаций в реальных балках необходимо знать её уравнение упругой линии (УУЛБ), которое в общем виде можно представить как функцию от абсциссы сечения

. (2.4)

 

Рассмотрим методы нахождения деформаций при изгибе, основанные на составлении и решении уравнения упругой линии балки.

 


Дата добавления: 2015-02-10; просмотров: 10; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Главные напряжения при изгибе. Полная проверка прочности балок при изгибе | Дифференциальное уравнение упругой линии балки и его интегрирование
lektsii.com - Лекции.Ком - 2014-2020 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты