КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
С О Д Е Р Ж А Н И Е 9 страница
На сегодняшний день в современном естествознании наиболее популярно объяснение возникновения Вселенной с помощью теории Большого взрыва, основой которой считается общая теория относительности (ОТО, уравнения Гильберта-Эйнштейна ,1915). Одно из первых решений этих уравнений было получено в 1922 г. российским физиком А. Фридманом, и оно описывало расширяющееся пространство-время, имеющее определенный момент «самого начала». Примерно 15 млрд. лет отделяет нашу эпоху от начала процесса расширения Вселенной, когда вся наблюдаемая нами Вселенная была сжата в, комочек, в миллиарды раз меньший булавочной головки. Если верить математическим расчетам, то в начале расширения радиус Вселенной был и вовсе равен нулю, а ее плотность равна бесконечности. Это начальное состояние называется сингулярностью - точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. Более того, нет уверенности, что наука когда-либо познает и объяснит такие состояния. Так что если сингулярность и является начальным простейшим состоянием нашей расширяющейся Вселенной, то наука не располагает о нем информацией. В состоянии сингулярности кривизна пространства и времени становится бесконечной, сами эти понятия теряют смысл. Идет не просто замыкание пространственно-временного континуума, как это следует из общей теории относительности, а его полное разрушение. Правда, понятия и выводы общей теории относительности применимы лишь до определенных пределов - масштаба порядка 10-33. Дальше идет область, в которой действуют совсем иные законы. Но если считать, что начальная стадия расширения Вселенной является областью, в которой господствуют квантовые процессы, то они должны подчиняться принципу неопределенности Гейзенберга, согласно которому, вещество невозможно стянуть в одну точку. Тогда получается, что никакой сингулярности в прошлом не было и вещество в начальном состоянии имело определенную плотность и размеры. По некоторым подсчетам, если все вещество наблюдаемой Вселенной, которое оценивается примерно в 1061, сжать до плотности 1094 г/см, оно заняло бы объем около 10-33 смЗ, что примерно в 1000 раз больше объема ядра атома урана. Его нельзя было бы разглядеть и в электронный микроскоп. Причины возникновения такого начального состояния (или сингулярности, эту гипотезу и сегодня поддерживают многие ученые), а также характер пребывания материи в этом состоянии считаются неясными и выходящими за рамки компетенции любой современной физической теории. Неизвестно также, что было до момента взрыва. Долгое время ничего нельзя было сказать и о причинах Большого взрыва, и о переходе к расширению Вселенной, но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Итак, очевидно, что исходное состояние перед «началом» не является точкой в математическом смысле, оно обладает свойствами, выходящими за рамки научных представлений сегодняшнего дня. Не вызывает сомнения, что исходное состояние, породившее взрыв, было неустойчивым, переход к расширяющейся Вселенной был скачкообразный. Это, очевидно, было самое простое состояние из всех, реализовавшихся позднее вплоть до наших дней. В нем было нарушено все, что нам привычно: формы материи, законы, управляющие их поведением, пространственно-временной континуум. Такое состояние можно назвать хаосом, из которого в последующем развитии системы шаг за шагом формировался порядок. Хаос оказался неустойчивым, это послужило исходным толчком для последующего развития Вселенной. Еще Демокрит утверждал, что мир состоит из атомов и пустоты - абсолютно однородного пространства, разделяющего атомы и тела, в которые они соединяются. Современная наука на новом уровне интерпретирует атомизм, и вносит совершенно иной смысл в понятие среды, разделяющей частицы. Эта среда отнюдь не является абсолютной пустотой, она вполне материальна и обладает весьма своеобразными свойствами, пока еще мало изученными. По традиции, эта среда, неотделимая от вещества, продолжает называться пустотой, вакуумом. Вакуум - это пространство, в котором отсутствуют реальные частицы и выполняется условие минимума плотности энергии в данном объеме. Казалось бы, раз нет реальных частиц, то пространство пусто, в нем не может содержаться энергия, даже минимальная. Но это представление пришло к нам из классической физики. Квантовая же теория, опираясь на принцип неопределенности Гейзенберга, опровергает его. Известно, что применительно к теории поля принцип неопределенности утверждает невозможность одновременного точного определения напряженности поля и числа частиц. Раз число частиц равно нулю, то напряженность поля не может равняться нулю, иначе оба параметра будут известны, и принцип неопределенности будет нарушен. Напряженность поля в вакууме может существовать лишь в форме флуктуационных (флуктуация - небольшое, нерегулярное хаотическое изменение какой-либо физической величины) колебаний около нулевого значения. Соответствующая этим колебаниям энергия будет минимально возможной. В соответствии с признанным дуализмом волновых и корпускулярных свойств колебания полей обязаны порождать частицы.
|