![]() КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Ускорение точек тела при сферическом движении.
Ускорение любой точки M тела, движущегося сферически, определяется формулой Ривальса и равно векторной сумме двух составляющих: вращательного и осестремительного ускорений: Вращательное ускорениеточки M равно векторному произведению вектора углового ускорения Осестремительное ускорениеточки M равно векторному произведению вектора угловой скорости Вектор вращательного ускорения Величина вращательного ускорения точки M тела, движущегося сферически, равна произведению углового ускорения тела на расстояние от точки до мгновенной оси ускорения: Вектор осестремительного ускорения Величина осестремительного ускорения точки M тела, движущегося сферически, равна произведению квадрата угловой скорости тела на расстояние от точки до мгновенной оси вращения: Дата добавления: 2015-04-15; просмотров: 33; Нарушение авторских прав |