КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Решение систем линейных уравнений методом простой итерацииРешение СЛУ возможно не только прямыми, где предопределено число математических операций, но и итерационными методами. Для решения итерационным методом требуется получить рекуррентное соотношение . С этой целью матрица коэффициентов представляется в виде А=S+T Тогда исходную СЛУ можно записать в виде: или . Если матрица S-1 существует, то для определения решения СЛУ можно записать следующее рекуррентное выражение:
Итерационный метод определяется способом разбиения матрицы А на S и T. Для решения СЛУ в настоящее время применяются, в основном, методы простой итерации и Гаусса-Зейделя. В методе простой итерации (метод Якоби) S –диагональная матрица из диагональных элементов матрицы А. ОтсюдаТ – матрица, диагональные элементы которой равны 0, а недиагональные совпадают с соответствующими элементами матрицы А.
В каноническом виде рекуррентное выражение (5.1) метода простой итерации (метода Якоби) для УУН имеет вид Пример: Рассмотрим систему УУН, соответствующую некоторой электрической сети с заданными узловыми токами (в качестве упражнения читателю предлагается изобразить схему этой сети) Выразив из первого уравнения переменную U1, а из второго U2, получаем рекуррентное соотношение метода простой итерации: или . Для организации итерационного процесса предлагается брать в качестве начального приближения напряжения, равные напряжению балансирующего узла: . Итерация 1. . Итерация 2. , . Дальнейшие вычисления производятся аналогично. После 13 итераций получается почти точное решение: .
|