Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Метод Зейделя-Гаусса




В отличие от метода простой итерации метод Зейделя-Гаусса отличается тем, что получаемые значения переменных сразу вступают в расчетный процесс:

.

В матричном виде такой процедуре соответствует запись:

где , ,

а рекуррентное выражение представляется в виде:

.

Сходимость метода Зейделя-Гаусса, как правило, лучше, но может быть и хуже, чем в простой итерации. Это зависит от характеристик матрицы коэффициентов.

Пример: Для рассмотренной в предыдущем примере электрической сети методом Зейделя-Гаусса решить систему уравнений узловых напряжений.

Рекуррентное выражение для метода Зейделя-Гаусса:

.

Первое уравнение как в методе простой итерации. Второе отличается подстановкой вместо значения .

Для организации итерационного процесса возьмем начальное приближение напряжений, равное напряжению балансирующего узла: .

Итерация 1.

Точное решение этим методом достигается за семь итераций, т.е. почти в два раза быстрее, чем методом простой итерации.


Поделиться:

Дата добавления: 2015-04-16; просмотров: 138; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты