Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Линеаризация уравнений




Читайте также:
  1. IV. Решение уравнений.
  2. Без записи их уравнений
  3. Вопрос 2. Сколько начальных условий определяют частное решение нормальной системы дифференциальных уравнений?
  4. Вывод уравнений импульсного элемента
  5. Выделение уравнений продольного движения из полной системы уравнений продольного движения самолета.
  6. Гармоническая линеаризация НЭ
  7. Задание № 4. Вычисление интегралов и решение уравнений
  8. Здесь в каждой строке (Ф — 1) независимых уравнений, а всего строчек К. Следовательно, имеется К(Ф — 1) уравнений, которые
  9. Инспекционный анализ дифференциальных уравнений.
  10. Линеаризация моделей статики.

Пусть динамическое уравнение некоторой САУ (или ее отдельного звена) имеет произвольный нелинейный вид

, (2.1)

где y – выходная величина; u – входная величина; f – внешнее возмущение; .

Допустим, что установившийся процесс в системе имеет место при некоторых постоянных значениях переменных u = u*, f = f*, y = y*. Тогда уравнение установившегося состояния согласно (2.1) будет

(2.2)

В возмущенном движении переменные, являющиеся аргументами функций F и j уравнения (2.1), будут отличаться от своих установившихся значений:

(2.3)

В основе линеаризации нелинейных уравнений лежит предположение о том, что в исследуемом динамическом процессе переменные изменяются так, что их отклонения от установившихся значений, т.е. величины , остаются все время достаточно малыми. Это допущение является справедливым в силу принципа работы замкнутой САУ.

Разложим функции F и j в уравнении (2.1) в ряд Тейлора по степеням указанных выше малых отклонений, рассматривая все производные тоже как самостоятельные переменные. Тогда уравнение (2.1) примет вид:

(2.4)

где , например, означает частную производную , вычисленную при значениях переменных, соответствующих установившемуся режиму; R1 – остаток ряда Тейлора для функции F, содержащий члены выше 1-го порядка малости; R2 – остаток ряда Тейлора для функции j, содержащий члены выше 1-го порядка малости.

Вычтя из уравнения (2.4) уравнение установившегося состояния (2.2) и отбросив члены высшего порядка малости R1 и R2 , получим искомое линеаризованное уравнение динамики исследуемой системы в виде

(2.5)

Уравнение (2.5) называется дифференциальным уравнением системы (или ее отдельного звена) в отклонениях. Это уравнение записывают так, чтобы выходная величина и ее производные находились в левой части уравнения, а входная величина и все остальные члены – в правой части. Для коэффициентов уравнения (2.5) применим более простые обозначения

(2.6)

где n, m, r – порядки старших производных выходной величины y, входной величины u и возмущения f соответственно. С учетом обозначений (2.6) уравнение (2.5) примет вид:

+ + + = + + + + . (2.7)

Часто для упрощения записи знак вариации в уравнении (2.7) опускают, не забывая при этом, что все переменные есть отклонения исходных величин от их установившихся значений. В общем случае уравнение (2.7) может быть записано в виде:



+ +…+ + = + +…+ + + + + +…+ + . (2.8)

Для реальных систем обычно выполняется соотношение n>m, n>r.

 


Дата добавления: 2014-11-13; просмотров: 25; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты