КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Идеальное дифференцирующее звеноПри уравнение (4.2) становится уравнением идеального дифференцирующего звена (4.5) где - передаточный коэффициент. Передаточная функция звена W(p)=kp. В изображениях Лапласа при нулевых начальных условиях уравнение (4.5) примет вид . (4.6) Передаточная функция (4.7) Идеальным дифференцирующим звеном можно моделировать, например, тахогенератор (ТГ), если в качестве входной величины ТГ выбрать угол поворота его ротора a, а в качестве выходной – напряжение , снимаемое с роторной обмотки (рис. 1.4). Характеристики звена: Для дифференцирующих звеньев из временных характеристик рассмотрим лишь переходную функцию. а) Переходная функция есть импульсная функция, площадь которой равна k. б) Частотная передаточная функция (4.8) где . В соответствии с (3.28) при изменении частоты от 0 до (рис.4.1) конец вектора движется по положительной части мнимой оси от 0 до . Идеальное дифференцирующее звено создает опережение выходной величины по отношению к входной на 90° на всех частотах. Амплитуда выходной величины возрастает с ростом частоты. в) ЛАХ звена строим по уравнению (4.9) Выражение (4.9) есть уравнение прямой линии, которая имеет положительный наклон к оси с коэффициентом 20. Причем, если частота возрастает в 10 раз, т.е. на декаду, функция возрастает на 20 дБ. В этом случае говорят, что прямая (4.9) имеет наклон +20 дБ на декаду. На частоте прямая (4.9) проходит через точку (рис.4.2).
|