Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Намагничение вещества.




Читайте также:
  1. Агрегатные состояния вещества.
  2. Измерение удельной теплоёмкости вещества.
  3. Концепция живого вещества. Выявление глобальной роли живого вещества.
  4. Лекция 18. Магнитные свойства вещества.
  5. Надпочечники. Источники и основные этапы развития. Строение коркового и мозгового вещества. Секреторная функция надпочечников и ее регуляция. Возрастные изменения.
  6. Намагничение магнетика
  7. Остаточное намагничение. Коэффициент Q. Виды остаточной намагниченности(ориентационная, термостатическая, вязкая)
  8. Рабочие растворы, их приготовление. Установочные (исходные) вещества. Поправочный коэффициент
  9. Рыхлая волокнистая соединительная ткань. Строение и функции клеток и межклеточного вещества.

Атом в магнитном поле. Диа- и парамагнитный эффекты.

Рассмотрим механизм действия внешнего магнитного поля на движущиеся в атоме электроны, т.е. на микротоки.

Как известно, при помещении контура с током в магнитное поле с индукцией возникает вращающий момент сил

под действием которого контур ориентируется таким образом, что плоскость контура располагается перпендикулярно, а магнитный момент - вдоль направления вектора (рис.3).

Аналогично ведет себя электронный микроток. Однако ориентация орбитального микротока в магнитном поле происходит не совсем так, как контура с током. Дело в том, что электрон, движущийся вокруг ядра и обладающий моментом импульса, подобен волчку, следовательно, ему присущи все особенности поведения гироскопов под действием внешних сил, в частности, гироскопический эффект. Поэтому, когда при помещении атома в магнитное поле на орбитальный микроток начинает действовать вращающий момент стремящийся установить орбитальный магнитный момент электрона вдоль направления поля, возникает прецессия векторов и вокруг направления вектора (вследствие гироскопического эффекта). Частота этой прецессии

называется ларморовой частотой и одинакова для всех электронов атома.

Таким образом, при помещении любого вещества в магнитное поле каждый электрон атома за счет прецессии своей орбиты вокруг направления внешнего поля порождает дополнительное индуцированное магнитное поле, направленное против внешнего и ослабляющее его. Поскольку индуцированные магнитные моменты всех электронов направлены одинаково (противоположно вектору ), суммарный индуцированный момент атома также направлен против внешнего поля.

Явление возникновения в магнетиках индуцированного магнитного поля (вызванного прецессией электронных орбит во внешнем магнитном поле), направленного противоположно внешнему полю и ослабляющему его, называется диамагнитным эффектом. Диамагнетизм присущ всем веществам природы.

Диамагнитный эффект приводит к ослаблению внешнего магнитного поля в магнетиках.

Однако, возможно возникновение и еще одного эффекта, называемого парамагнитным. В отсутствии магнитного поля магнитные моменты атомов вследствие теплового движения ориентированы беспорядочно и результирующий магнитный момент вещества равен нулю (рис.4,а).



При внесении такого вещества в однородное магнитное поле с индукцией поле стремится установить магнитные моменты атомов вдоль ,поэтому векторы магнитных моментов атомов (молекул) прецессируют вокруг направления вектора . Тепловое движение и взаимные столкновения атомов приводят к постепенному затуханию прецессии и уменьшении углов между направлениями векторов магнитных моментов и вектора .Совместное действие магнитного поля и теплового движения приводит к преимущественной ориентации магнитных моментов атомов вдоль поля

(рис.4, б), тем большей, чем больше и тем меньшей, чем выше температура. В результате суммарный магнитный момент всех атомов вещества станет отличным от нуля, вещество намагнитится, в нем возникает собственное внутреннее магнитное поле, сонаправленное с внешним полем и усиливающее его.

Явление возникновения в магнетиках собственного магнитного поля, вызванного ориентацией магнитных моментов атомов вдоль направления внешнего поля и усиливающего его, называется парамагнитным эффектом.

Парамагнитный эффект приводит к усилению внешнего магнитного поля в магнетиках.



При помещении любого вещества во внешнее магнитное поле оно намагничивается, т.е. приобретает магнитный момент за счет диа- или парамагнитного эффекта, в самом веществе возникает его собственное внутреннее магнитное поле (поле микротоков) с индукцией .

Для количественного описания намагничения вещества вводят понятие намагниченности.

Намагниченность магнетика - это векторная физическая величина, равная суммарному магнитному моменту единицы объема магнетика:

В СИ намагниченность измеряется в A/м.

Намагниченность зависит от магнитных свойств вещества, величины внешнего поля и температуры. Очевидно, что намагниченность магнетика связана с индукцией .

Как показывает опыт, для большинства веществ и не в очень сильных полях намагниченность прямо пропорциональна напряженности внешнего поля, вызывающего намагничение:

(1)

где c - магнитная восприимчивость вещества, безразмерная величина.

Чем больше величина c, тем более намагниченным оказывается вещество при заданном внешнем поле.

Можно доказать, что

(2)

Магнитное поле в веществе является векторной суммой двух полей: внешнего магнитного поля и внутреннего, или собственного магнитного поля, создаваемого микротоками. Вектор магнитной индукции магнитного поля в веществе характеризует результирующее магнитное поле и равен геометрической сумме магнитных индукций внешнего и внутреннего магнитных полей:

(3)

.

Относительная магнитная проницаемость вещества показывает, во сколько раз индукция магнитного поля изменяется в данном веществе.

Что именно происходит с магнитным полем в данном конкретном веществе - усиливается оно или ослабляется - зависит от величины магнитного момента атома (или молекулы) данного вещества.



 


Дата добавления: 2014-12-03; просмотров: 16; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты