Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Доведення.




Розглянемо три дробових числа, але для спрощення викладок виберемо їх із спільними знаменниками, і доведемо, що ( ). ( =(Чому?!)= (Чому?!)= (Чому?!)= . Отже, ( ) сполучний закон додавання невід’ємних раціональних чисел доведено.

Означення: сума натурального числа і дробового числа, записаних поряд без знака додавання називають мішаним числом.

Наприклад, 8+ =8 . Щоб представити мішане число дробовим, його необхідно перетворити у неправильний дріб, а саме: 8 = = . Щоб перетворити неправильний дріб у мішане число, потрібно поділити чисельник на знаменник і частку записати перед дробом, а остачу записати у чисельнику, залишивши той самий знаменник, наприклад: . Отже, множина невід’ємних раціональних чисел замкнена відносно операції додавання.

Операцію віднімання у множині невід’ємних раціональних чисел також означатимемо так, щоб це не суперечило правилам віднімання цілих чисел.

Означення: відняти від дробового числа дробове число - це означає знайти таке дробове число - , яке у сумі з дробовим числом дає нам дробове число .

Таке означення не суперечить тому, яке ми прийняли для невід’ємних цілих чисел. Для того, щоб знайти різницю двох дробових чисел, приймемо наступне означення.

Означення: різницею двох дробових чисел з рівними знаменниками називається таке третє дробове число, чисельник якого дорівнює різниці чисельників, а знаменник – спільному знаменнику.

Символічно прийняте означення запишеться так: - = . Щоб знайти різницю дробових чисел з різними знаменниками, слід звести їх до спільного знаменника та використати попереднє означення. Символічно це запишеться так: - = . У прийнятих означеннях нічого не говориться про існування та єдиність різниці. Саме тому слід довести наступні теореми.

Теорема: різниця двох невід’ємних раціональних чисел і існує тоді і тільки тоді, коли ³ .


Поделиться:

Дата добавления: 2014-12-03; просмотров: 185; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты