Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Основные теоретические сведения. Линейные модели обычно применяются для анализа простых взаимосвязей между экономическими показателями




Линейные модели обычно применяются для анализа простых взаимосвязей между экономическими показателями. Однако в ряде случаев экономические соотношения имеют более сложный характер и их представление в виде линейной зависимости не всегда возможно, а часто и не корректно.

Однако часто нелинейные связи между объясняющими и объясняемой переменной можно с помощью определенных преобразований свести к линейным.

К таким нелинейным связям в частности относятся:

1. Нелинейные регрессии относительно объясняющих переменных Хi, но линейные по оцениваемым параметрам i :

а) Y = 0 + 1 Х + 2 Х2 + …+ m Хm + - степенной полином;

б) Y = 0 + 1 + - равносторонняя гипербола.

2. Регрессии нелинейные по оцениваемым параметрам i :

а) Y = А - показательная функция;

б) Y = A - степенная функция;

в) Y = - экспоненциальная функция.

Нелинейности первого вида приводятся к линейным регрессиям с помощью преобразования объясняющих переменных (введением новых переменных).

Пример

Y = 0 + 1 Х + 2 Х2 + … Y = 0 + 1 Х1* + 2 Х2* + …+ m Хm + , (3.1)

где Х1* = Х; Х2* = Х2, …, Хm* = Хm.

 

Y = 0 + 1 + Y = 0 + 1 Х* + , (3.2)

где Х* = .

Оценка коэффициентов осуществляется по уравнению (3.1) с использованием метода МНК оценки для множественной линейной регрессии.

Выражение (3.2) соответствует парной линейной регрессии.

Нелинейности второго вида приводятся к линейным с помощью операции логарифмирования.

Пример

В качестве примера рассмотрим производственную функцию Кобба –Дугласа

Y = A , (3.3)

где Y – объем производства; К – затраты капитала; L – затраты труда; - случайное возмущение; 1, 2 – коэффициенты частной эластичности объема производства Y по затратам капитала К и труда L; A – постоянный коэффициент.

Логарифмируя обе части уравнения (3.3) для i – го наблюдения, получим

ln yi = ln A + 1 ln Ki + 2 ln Li + ln i . (3.4)

Переобозначив переменные в (3.4)

yi* = ln yi ; Х1i = ln Ki ; Х2i = ln Li ; 0 = ln A; = ln i ,

получим

yi* = 0 + 1 Х1i + 2 Х2i + (3.5)

Для выборки объема n в матричной форме уравнение (3.5) запишется в виде

, (3.6)

где = (y1* , y2* ,…, yn* )T ; В = ( 0 , 1 , 2 )Т ;

.

Таким образом, алгоритм оценки параметров нелинейной регрессии состоит из предварительного преобразования нелинейной модели к линейной и оценки ее параметров обычным образом с использованием МНК. После чего осуществляются обратные преобразования и возврат к исходному нелинейному уравнению. Для нелинейной регрессии значимость уравнения в целом характеризуется также, как и в линейной регрессии с помощью коэффициента детерминации

= 1 – (1 – R2) , (3.7)

 

где . (3.8)

В (3.8) определяется по исходному нелинейному уравнению регрессии.

Примечание. Значимость коэффициентов регрессии осуществляется по линеаризованному уравнению. Поэтому, если в линеаризованном уравнении присутствует не bi , а ln bi , тогда Т-статистика этого параметра будет:

Тbi = ,

и характеризует значимость не самого коэффициента bi , а его логарифма.

При описании статистической зависимости между экономическими переменными различными функциональными соотношениями выбор наилучшей модели осуществляется следующим образом. Выбираются уравнения с наибольшими значениями . Если таких уравнений несколько (примерно с одинаковыми значениями ), то выбирается модель, у которой наименьшая или наименьшая остаточная дисперсия



Поделиться:

Дата добавления: 2014-12-23; просмотров: 158; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты