Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



А) Ряд, многоугольник и функция распределения случайной дискретной величины

Читайте также:
  1. D) Осы кесіндіде функция шенелген болуы керек
  2. Return x; нет этой инструкции, ведь функция так ничего не вернет!
  3. А) - функциялары аралығында сызықты тәуелсіз және олардың әрқайсысы көрсетілген біртекті теңдеудің шешімдері
  4. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  5. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  6. Абсолютные величины
  7. Абсолютные величины, их виды и единицы измерения
  8. Абсолютные и относительные величины
  9. Абсолютные и относительные статистические величины

Пример 8.1. Из партии, содержащей 100 изделий, среди которых имеется 10 дефектных, выбраны случайным образом пять изделий для проверки их качества. Построить ряд распределений случайного числа Х дефектных изделий, содержащихся в выборке.

 

Решение.

Введем в рассмотрение случайную величину X – число дефектных изделий среди выбранных пяти. Так как в выборке число дефектных изделий может быть любым целым числом в пределах от 0 до 5 включительно, то возможные значения xi, случайной величины Х равны:

x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 4, x6 = 5.

Вероятность Р(X = k) того, что в выборке окажется ровно k (k=0, 1, 2, 3, 4, 5) дефектных изделий, равна

.

В результате расчетов по данной формуле с точностью до 0,001 получим:

p1 = P(X = 0)=0,583, p1 = P(X = 1)=0,340,

p1 = P(X = 2)=0,070, p1 = P(X = 3)=0,007,

p1 = P(X = 4)=0, p1 = P(X = 5)=0.

Используя для проверки равенство , убеждаемся, что расчеты и округление произведены правильно (см. табл. 2).

Таблица 2

xi
pi 0,583 0,340 0,070 0,007

 

Пример 8.2. Изделия испытываются при перегру­зочных режимах. Вероятности для каждого изделия пройти испытание равны 4/5 и независимы. Испытания заканчиваются после первого же изделия, не выдержавшего испытания. Вывести формулу для ряда распределения числа испытаний.

 

Решение.

Введем в рассмотрение случайную величину X – число взятых изделий для испытаний. Испытания заканчиваются на k-м изделии (k = 1, 2, 3, ...), если первые k—1 изделий пройдут испытания, a k - e изделие не выдержит испытания.

Если Х — случайное число испытаний, то

Полученная формула для ряда распределения эквивалентна таблице 3.

Таблица 3.

xi k
pi

 

Особенность данной задачи состоит в том, что теоретически число испытаний может быть бесконечно большим, однако вероятность такого события стремится к нулю:

 

Пример 8.3. На пути движения автомашины четыре светофора. Каждый из них с вероятностью 0,5 либо разре­шает, либо запрещает автомашине дальнейшее движение.

 

Решение.

Х — случайное число светофоров, пройден­ных автомашиной без остановки; оно может принимать сле­дующие значения:



x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 4,

Вероятности pi = P(X=xi) того, что число пройденных светофоров Х будет равно данному частному значению, вычисляются по формуле

где p — вероятность для светофора задержать автомашину (p = 0,5).

В результате вычислений получим

p1 = 0,5, p2 = 0,25, p3 = 0,125, p4 = 0,0625,p5 = 0,0б25.

По полученным данным строим многоугольник распределения вероятностей (рис. 2).

 

Пример 8.4. Космическая ракета имеет прибор, состоящий из четырех блоков a1, a2, a3 и a4, каждый из которых дает отказ при попадании в него хотя бы одной элементарной частицы. Отказ прибора в целом наступает как при отказе блока a1, так и при одновременном отказе всех трех блоков a2, a3 и a4.

Построить функцию распределения F(x) случайного числа Х частиц, после попадания которых в прибор он дает отказ, если вероятность частице, попавшей в прибор, попасть в блок a1 равна p1 = 0,4, а в блоки a2, a3 и a4 соответственно равна p2 = p3 = p4 = 0,2.

 

Решение.

Обозначим A1, A2, A3 и A4 события, состоящие в отказе блоков a1, a2, a3 и a4 соответственно. Искомая функция распределения F(x) равна вероятности того, что при числе попаданий n<x прибор выйдет из строя, т. е.



F(x) = P(A1+A2A3A4)

Используя формулу

и применяя формулу сложения вероятностей, получим

где все вероятности определяются при условии попадания в прибор n(n>1) частиц. Так кaк

p1 + p2 + p3 + p4 = 1

и при каждом попадании частицы в прибор обязательно дает отказ один и только один из блоков, то

Таким образом, учитывая, что p2 = p3 = p4 = 0,2, получим

,

где под [x] понимается наибольшее целое число, меньшее x, например [5,9] = 5, [5] = 4. При n 1 F(x) = 0.

Таким образом, график функции распределения вероятностей для нескольких начальных значений x имеет вид, представленный на рис. 3.

 

 


Дата добавления: 2014-12-23; просмотров: 102; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
А) Ряд, многоугольник и функция распределения случайной дискретной величины. Случайная величина называется дискретной, если ее частные (возможные) значения можно пронумеровать. | Б) Функция распределения и плотность вероятности непрерывной случайной величины
lektsii.com - Лекции.Ком - 2014-2019 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты