КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Объяснение нового материала.Таблицу, показывающую, какие значения принимает составное высказывание при всех сочетаниях (наборах) значений входящих в него простых высказываний, называют таблицей истинности составного высказывания. Составные высказывания в алгебре логики записываются с помощью логических выражений. Для любого логического выражения достаточно просто построить таблицу истинности. Алгоритм построения таблицы истинности: 1) подсчитать количество переменных n в логическом выражении; 2) определить число строк в таблице, которое равно m = 2n; 3) подсчитать количество логических операций в логическом выражении и определить количество столбцов в таблице, которое равно количеству переменных плюс количество операций; 4) ввести названия столбцов таблицы в соответствии с последовательностью выполнения логических операций с учетом скобок и приоритетов; 5) заполнить столбцы входных переменных наборами значений; 6) провести заполнение таблицы истинности по столбцам. Например: Для формулы A (B Ú ) построить таблицу истинности. 1) Количество логических переменных 3, следовательно, количество строк в таблице истинности должно быть 23 = 8. 2) Количество логических операций в формуле 5, следовательно количество столбцов в таблице истинности должно быть 3 + 5 = 8.
Если высказывание истинно при всех значениях входящих в него переменных, то такое высказывание называется тождественно истинным или тавтологией. Если высказывание ложно при всех значениях входящих в него переменных, то такое высказывание называется тождественно ложным. Если значения сложных высказываний совпадают на всех возможных наборах значений входящих в них переменных, то такие высказывания называются равносильными, тождественными, эквивалентными.
|