Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Основные свойства определенного интеграла




1.

 

2.

 

Эти свойства аналогичны соответствующим свойствам неопределенного интеграла.

Следующее важное свойство определенного интеграла часто используется в приложениях.

 

3.

 

где любая точка из

Это свойство имеет простой геометрический смысл: если на и то оно утверждает, что площадь криволинейной трапеции, заштрихованной на рис. 4, равна сумме площадей составляющих ее меньших криволинейных трапеций.

 


4. Если функция непрерывна на отрезке то существует такая точка с из что

 

 


Геометрически это означает, что между и существует такая точка что площадь криволинейной трапеции (рис. 5) равна площади прямоугольника, основанием которого является отрезок а высотой -

Рис. 5

 

5. Если на то

 

6. Если на то

 

Это свойство тоже имеет простой геометрический смысл: если на то площадь меньшей криволинейной трапеции (рис. 6) меньше площади большей криволинейной трапеции


7. Если на то

 


Это свойство тоже легко проиллюстрировать геометрически: если на то оно утверждает, что площадь криволинейной трапеции больше площади прямоугольника (рис. 7) и меньше площади прямоугольника

 

Рис. 7.

 


Поделиться:

Дата добавления: 2015-01-05; просмотров: 147; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты