КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Функцияның экстремумы. Экстремумның қажетті және жеткілікті шарттары.Функция экстремумых0 нүктесінің - маңайы табылып, (х0- х0+ ), осы маңайдағы барлық х х0 үшін f(x)>f(х0) теңсіздігі орындалса, х0 нүктесі f(x) функциясының минимум нүктесі деп, ал f(x)<f(х0) теңсіздік орындалса, х0 нүктесі f(x) функциясыныңмаксимум нүктесідеп аталады. Функцияның минимум және максимум нүктелерінэкстремум нүктелерідеп атайды. Осы нүктелердегі функция мәндерін функция экстремумдарыдейді. 2-суретте y=f(x) функциясының максимум нүктелері x1және x3, ал минимум нүктелері x2 және x4 . Суреттен x4 нүктедегі минимум x1 нүктедегі максимумнан үлкен. Бұл функцияның экстремум ұғымы нүктенің қандай да бір - маңайында ғана анықталатындығымен түсіндіріледі. Сондықтан да, функция экстремуы дегеннің орнына көбіне функцияның локальді экстремумы дейді.
Анықтама.х0 нүктесінің - маңайы табылып, (х0- х0+ ), осы маңайдағы барлық х х0 үшін f(x)>f(х0) теңсіздігі орындалсаЭкстремумның қажетті және жеткілікті шарты Экстремумның бар болуының қажетті шартын Ферма теоремасы береді. Ферма теоремасы. х0 нүктесі y=f(x) функциясының экстремум нүктесі болып және осы нүктедегі функция туындысы бар болса, онда =0.Бұл теореманың геометриялық мағнасы: теорема шартын қанағаттандыратын нүктеде функция графигіне жүргізілген жанама абсцисса осіне параллель болады. Экстремумның бірінші жеткілікті шарты. y=f(x) функциясы х0 нүктесінде үзіліссіз және қандай да бір - маңайында функция туындысы бар болсын (х0 нүктесінде туынды болмауы мүмкін). Онда, 1) егер х аргумент х0 нүкте арқылы өткенде таңбасын оңнан теріске өзгертсе, онда х0 нүкте функцияның максимум нүктесі болады; 2) егер х аргумент х0 нүкте арқылы өткенде таңбасын терістен оңға өзгертсе, онда х0 нүкте функцияның минимум нүктесі болады; 3) егер х аргумент х0 нүкте арқылы өткенде таңбасын өзгертпесе, онда х0 нүкте функцияның экстремум нүктесі емес. Жоғары кестеде қарастырылған функцияларды осы жеткілікті шарт бойынша зерттесек. х аргумент нүкте арқылы өткен кездегі таңбасын анықтасақ, мынадай толықтыру аламыз:
Экстремумның екінші жеткілікті шарты. y=f(x) функциясы х0 нүктесінде үзіліссіз және қандай да бір - маңайында екі рет дифференциалдансын. Сонымен қатар болса, онда 1) егер болса, онда х0 нүкте f(x) функциясының максимум нүктесі болады; 2) егер болса, онда х0 нүкте f(x) функциясының минимум нүктесі болады.
|