Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Анықталған интеграл қасиеттері.




Читайте также:
  1. Аi - весомость каждого фактора в интегральной оценке конкурентоспособности предприятия.
  2. Аналитическая философия. Интегральный подход К.Уилбера. Философия телесности и психосоматическая медицина.
  3. Анықттауыштардың қасиеттері.
  4. Вопрос 5. Не вычисляя интеграл оценить границы его возможного значения, используя теорему об оценке определенного интеграла.
  5. Вычисление двойного интеграла
  6. Вычисление определенного интеграла
  7. Вычисление площадей фигур с помощью определенного интеграла
  8. Геометрические и физические приложения кратных интегралов
  9. ГЛАВА 14. ИНТЕГРАЛЬНАЯ ПОДГОТОВКА В ГИМНАСТИКЕ

1. Тұрақтыны шек таңбасы алдына шығаруға болады: .

1. Екі функцияның алгебралық қосындысының интегралы сол функциялар интегралдарының алгебралық қосындысына тең болады: .

3Интеграл шектерінің орындарын ауыстырғанда интеграл таңбасы қарама-қарсыға өзгереді: . Интеграл шектері бірдей болғанда интеграл мәні нолге тең: .

Tuth ,jkcf? jylf m(b-a)< <M(b-a)/ Егер с нүктесі [a;b] кесіндісінде жатқан нүкте болса, онда .

Орта мән туралы теорема. y=f(x) функциясы [a;b] кесіндісінде үзіліссіз функция болса, онда қандай да бір с [a;b] нүкте табылады да мына теңдік орындалады: (b-a)f(c).

Егер y=f(x) функциясы жұп болса, онда 2 .

Егер y=f(x) функциясы тақ болса, онда 0.

2. Ньютон-Лейбниц формуласы. F(b) – F(a),мұндағы .

Анықталған интегралдағы бөліктеп интегралдау: .

Анықталған интегралдағы айнымалыны алмастыру:

 

.

4.Меншіксіз интеграл. Егер y=f(x) функциясы аралығында үзіліссіз болса, онда мына шекті жоғары шегі шексіз меншіксіз интеграл дейді және былай жазады:

.

Теңдіктің оң жағындағы шек ақырлы болса меншіксіз интеграл жинақталады деп, ал шек ақырсыз немесе болмаса меншіксіз интеграл жинақталмайды дейді. Осыған ұқсас мынадай меншіксіз интегралдар анықталады:

, .

19. Анықталған интегралда айнымалыны алмастыру және бөліктеп интегралдау әдісі. Мысалдар..Айнымалыны алмастыру әдісі.I=интегралын қарастырайық. Айталық, x=g(t) дифференциалданатын функция болсын. Сонда dx=g’(t)dt және .

Бұләдіс айнымалыны ұтымды алмастыруға негізделген. Айнымалыны алмастыру арқылы интеграл бірден немесе бірнеше амалдардан кейін кестелік интегралға келтіріледі. Мысалдар қарастырайық.

а)

б) arctgt+C= = arctgx3+C

в) ln|t|+C=ln|1+lnx|+C

Бөліктеп интегралдау әдісі.Бұл әдіс мынадай қатынасқа негізделген:



d(uv) = udv + vdu udv = d(uv) – vdu мұндағы u=f(x) және v=g(x) функциялары туындылары бар функциялар. Теңдіктің екі жағынан да интеграл алсақ,

, осыдан .

Бұл әдісті қолданғанда u және v функцияларын интеграл интегралға қарағанда оңай алынатындай етіп таңдайды. Мысалдар қарастырайық.

а) +С = +C.

б) .

О= (сщыч+ыштч)-О О= (сщыч+ыштч)+Сю

Төмендегі интегралдар тобы тек бөліктеп интегралдау әдісімен есептелінеді:

; ; ; .


Дата добавления: 2015-01-05; просмотров: 319; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2020 год. (0.004 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты