КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Пункт 2. Параметрические и автоколебанияПараметрические и автоколебания. Пример. Работа внешней силы.Из-за потери энергии на трение собственные колебания постепенно затухают. Если к осциллятору подводить энергию от источника внешней гармонической силы, то он начнет колебаться с частотой этой силы, которая вообще говоря, отличается от собственной частоты осциллятора. Однако можно создать устройства, в которых осциллятор сам регулирует подвод энергии из внешнего источника таким образом, чтобы компенсировать потери энергии на трение. За период колебаний из внешнего источника энергия, приобретаемая осциллятором, равна энергии, затрачиваемой на преодоление сил трения. В результате осциллятор совершает незатухающие колебания. Такие самоподдерживающиеся колебания называютсяавтоколебаниями.Если трение невелико, то за один период в систему поступает лишь небольшая доля полной энергии осциллятора. В этом случае автоколебания с очень большой точностью являются гармоническими и их частота очень близка к частоте собственных колебаний. Если же силы трения велики, то за один период в систему подводится значительная часть полной энергии осциллятора и поэтому колебания сильно отличаются от гармонических, хотя и являются периодическими. Период этих колебаний не совпадает с периодом собственных колебаний осциллятора. Автоколебания маятника. Рассмотрим колебания маятника, подвешенного на оси во вращающейся втулке (Матвеев рис. 156 305 стр), и превращение его энергии в различных случаях. Вращающаяся втулка в результате скольжения относительно оси совершает работу на преодоление сил трения. Источником энергии, превращенной во внутреннюю, является машина, приводящая во вращение втулку. В тот полупериод колебаний маятника, когда направления вращения оси маятника и втулки совпадают, силы трения совпадают по направлению с движением точек поверхности оси. Поэтому эти силы вызывают усиление колебаний маятника. С другой стороны, энергия, превратившаяся во внутреннюю, за время полупериода колебаний в сравнении со случаем покоящегося маятника уменьшается ввиду того, что относительное перемещение трущихся поверхностей (внешняя поверхность оси и внутренняя поверхность втулки) уменьшается. Поэтому лишь часть энергии от машины, вращающей втулку, превращается во внутреннюю, а другая часть идет на увеличение энергии колебаний маятника. В другой полупериод колебаний маятника, когда направления вращения его оси и оси втулки противоположны, силы трения действуют против направления движения маятника. Поэтому они тормозят его движение и энергия колебаний маятника превращается во внутреннюю. Энергия от машины, вращающей втулку, в этом случае также полностью превращается во внутреннюю. Полный результат превращений энергии в течение периода колебаний определяется характером зависимости сил трения от скорости. Если силы трения не зависят от скорости, то энергия, приобретаемая маятником в полупериоде колебаний, когда направления вращения его оси и вала совпадают, равна энергии, теряемой им на работу против сил трения в другом полупериоде. В этом случае вращение втулки не вносит каких-либо изменений в колебания маятника в сравнении со случаем невращающейся втулки. Если сила трения увеличивается с возрастанием скорости, то энергия, приобретаемая маятником за полупериод колебаний, когда направления вращения его оси и вала совпадают, меньше энергии, теряемой им на работу против сил трения в другом полупериоде, поскольку во втором полупериоде относительные скорости больше, а следовательно, и силы трения больше, чем в первом полупериоде. В этом случае вращение втулки увеличивает затухание колебаний маятника. Параметрическое возбуждение колебаний. Свойства колеблющихся систем описываются величинами, называемымипараметрами. Например, математический маятник характеризуется одним параметром — его длиной. При изменении этого параметра изменяются колебательные свойства маятника, а именно частота собственных колебаний. Если этот параметр изменять в определенном такте с колебаниями, то можно сообщить маятнику энергию и тем самым увеличить амплитуду его колебаний либо просто поддерживать колебания в незатухающем режиме. Такое возбуждение и поддержание колебаний называется параметрическим. Хорошо известным примером параметрического возбуждения и поддерживания колебаний является качание на качелях. Когда качели находятся в верхней точке, качающийся на них приседает, а когда качели проходят нижнюю точку, он снова выпрямляется. В результате приседания в верхних точках совершается меньшая по модулю работа, чем работа при подъеме в нижней точке. Разность работ, по закону сохранения, равна разности энергий качаний, и качели раскачиваются. Если эта энергия затрачивается полностью на работу силы трения, то качания поддерживаются в незатухающем режиме. Билет № 20.
|