Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Колебания с 2-мя степенями свободы. Нормальные колебания (моды) и нормальные частоты. Примеры.




Читайте также:
  1. А. Личные права и свободы.
  2. Автоколебания
  3. Акустические колебания
  4. Акустические колебания
  5. Акустические колебания. Действие шума на человек
  6. Алгоритм. Свойства алгоритма. Способы описания алгоритма. Примеры.
  7. Базовые классы VCL. Характеристика. Примеры.
  8. Вибрации и акустические колебания
  9. Вибрация, акустические колебания и шумы
  10. Видение организации. Примеры.

Если система обладает несколькими степенями свободы, то при малых отклонениях от положения равновесия возможны колебания сразу по всем степеням свободы. Обычный маятник может колебаться в двух взаимно перпендикулярных вертикальных плоскостях, проходящих через точку подвеса. Поэтому он имеет две степени свободы. Наличие связи различных степеней свободы между собой придает колебанию системы со многими степенями свободы новые физические закономерности.

k  
Связанной системойназывается система со многими степенями свободы, между которыми имеется связи, обеспечивающие возможность обмена энергией между различными степенями свободы. Примером связанной системы с двумя степенями свободы могут служить два маятника, соединенных между собой пружиной.

x2  

 

       
 
пружина
 
два пружинных маятника  

 


X1 X2

Несмотря на сложность движения двух связанных маятников, оно всегда может быть представлено как суперпозиция четырех гармонических колебаний, частоты которых называются нормальными частотами связанной системы. Число нормальных частот равно числу степеней свободы. В приведенном примере имеем две степени свободы. И можно представить колебание как суперпозицию двух колебаний.

ωI SI1(t)=S20sin(ωI*t+φI)

SI2(t)=S10sin(ωI*t+φI)

ωI, SI20/SI10=1 – первая мода

ωI=√(k/m)

ωII SII1(t)=SII20*sin(ωII*t+φII)

SII2(t)=SII10*sin(ωII*t+φII)

 

ωII, SII20 / SII10 = -1 – вторая мода

ωII=√((k+2k1)/m)

S1(t)=SI10*sin(ωI*t+φI)+SII10*sin(ωII*t+φII)

S2(t)=SI20*sin(ωI*t+φI)+SII20*sin(ωII*t+φII)

 

ωI,ωII, SI20/SI10, SII20 / SII10 }à известны

Начальные условия S1(0), S1'(0) S2(0), S2'(0) } → SI10 ; φI SII10 ; φII

Если маятники отклонить одинаково в одну сторону, то они колеблются с некоторой частотой ω1, которая называется нормальной. Частота колебаний маятников, отклоненных одинаково в противоположных направлениях, является другой нормальной частотой ω2.

Если ωI ≈ ωII , |ωI – ωII | <<ωI ≈ ωII , тогда отчетливо будут наблюдаться биения. Биение – колебание, которое происходит с медленной частотой и является суммой двух гармонических колебаний с близкими частотами. Это колебание с изменяющейся амплитудой. Оно лишь приблизительно гармоническое с частотой ωI ≈ ωII , а его амплитуда изменяется с частотой |ωI – ωII |. Tбиен=2p/(ωI – ωII ). Δω=ωI – ωII <ω>=(ωI II)/2 S1(t)=2*S1(t)*(cos( Δω/2)t) *cos(<ω>t) S2(t)=2*S1(t)*(sin( Δω/2)t) *cos(<ω>t).



Запас начальной кинетической и потенциальной энергий определяется из начального смещения и начальной скорости. Если бы потери энергии в системе отсутствовали, то этот начальный запас энергии оставался бы неизменным при колебаниях. Процесс колебаний сопровождался бы только переходом энергии из потенциальной в кинетическую и обратно, которые будут происходить в двое большей частотой, чем сами колебания.

U=kx2 /2=kx2cos2(wt+p)/2=kX2(1+cos2(wt+p))/4;

Tk=mV2/4(1- cos2(wt+p))/4; формулы содержат двойную частоту, но изменения потенциальной и кинетической энергий происходят по гармоническому закону. Так как амплитуды смещения и скорости связаны соотношеннием V=wX; то полная энергия равна W=Tk+U=kX2/2=mV2/2;



При наличии трения , являющегося внешней силой, энергия колебаний уменьшается.

Добротноть. Для характеристики осциллирующей системы часто принимается величина Q называемая добротностью. Эта величина представляет собой умноженное на 2p отношение запасённой энергии к среднему значению энергии, теряемому за один период. Большим значениям Q соответствует слабое затухание осциллятора.Q=p/Q , где Q логарифмический декримент затухания.

 

 

 

Билет № 21.


Дата добавления: 2015-01-05; просмотров: 19; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты