КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Непрерывность несобственного интеграла по параметру
Радиус сходимости степенного ряда. Формула Коши-Адамара Круг сходимости степенного ряда — это круг вида , , в котором ряд абсолютно сходится, а вне его, при , расходится. Иными словами, круг сходимости степенного ряда есть внутренность множества точек сходимости ряда. Круг сходимости может вырождаться в пустое множество, когда , и может совпадать со всей плоскостью переменного , когда . Радиус сходимости[править | править вики-текст] Радиус круга сходимости называется радиусом сходимости ряда. Радиус сходимости ряда Тейлора аналитической функции равен расстоянию от центра ряда до множества особых точек функции, и может быть вычислен по формуле Коши — Адамара: Эта формула выводится на основе признака Коши.
|