КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Взаимное расположение прямых. Нахождение общих точек.Две прямые в пространстве могут пересекаться, скрещиваться и могут быть параллельны. 1. Пересекающиеся прямые Пересекающимися прямыми называются такие прямые, которые имеют одну общую точку. Из инвариантного свойства 5 следует, что проекция точки пересечения проекций прямых а и b есть точка пересечения этих прямых (рис. 3.4). . Рис. 3.4. Пересекающиеся прямые 2. Параллельные прямые На рис. 3.5 изображены параллельные прямые – прямые, пересекающиеся в несобственной точке (прямые, лежащие в одной плоскости и пересекающиеся в бесконечно удаленной точке). Из инвариантного свойства 6 следует, что проекции параллельных прямых а и b параллельны. 3.Скрещивающиеся прямые Скрещивающиеся прямые – это прямые, не лежащие в одной плоскости, это прямые не имеющие ни одной общей точки. На комплексном чертеже (рис. 3.6) точки пересечения проекций этих прямых не лежат на одном перпендикуляре к оси Х (в отличие от пересекающихся прямых, см. рис. 3.4). . Рис. 3.5. Изображение параллельных прямых Рис. 3.6. Скрещивающиеся прямые
.
|