КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Точные и приближенные методы решения систем линейных уравнений. Метод последовательного исключения неизвестных (метод Гаусса)Численные методы СЛАУ можно разделить на точные и приближенные. Метод решения системы является точным, если он дает принципиальную возможность получить решение системы после конечного числа алгебраических операций. К ним относятся метод Крамера, подстановки, метод последовательного исключения неизвестных и его модификации. Приближенными методами являются те методы, которые позволяют получить только приближенные решения, причем количество итераций зависит от точности. К ним относятся метод простой итерации, метод Зейделя, метод ортогонализации и др. Метод Гаусса Метод Гаусса позволяет в процессе преобразования матрицы не только находить решения системы, но и решать вопрос о существовании и количестве решений матрицы. Из основной теоремы высшей алгебры известно, что если ранг матрицы равен рангу расширенной матрицы и равен количеству уравнений в системе, то система имеет единственное решение. Если ранг матрицы равен рангу расширенной матрицы, но меньше количества уравнений в системе, то система имеет бесконечное число решений. Если ранг матрицы меньше ранга расширенной матрицы, то система не имеет решений. Для определенности будем рассматривать только те СЛАУ, которые имеют единственное решение. Система n линейных уравнений в общем виде выглядит так: Метод последовательного исключения неизвестных с выбором главного элемента заключается в том, что матрица коэффициентов при неизвестных x приводится к треугольному виду: по главной диагонали – единицы, ниже главной – нули, а остальное как получится. Рассмотрим метод на примере системы уравнений с 4-мя неизвестными. Разместим коэффициента матрицы и коэффициенты расширенной матрицы в таблице. Предположим, что (важно). Разделим первую строку на коэффициент при x1. ; Чтобы получить 0 во второй строке при х1, мы должны из второй строки вычесть преобразованную первую, умноженную на a21: ; ; Деление повторять до получения нулей ниже главной диагонали: Обратный ход заключается в следующем: из последней строки находим иксы. ; ; ; ;
|