Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Секториальная площадь




Часть 15. Изгиб и кручение тонкостенных стержней

Общие положения и основные особенности расчета

 

В настоящее время в машиностроении, авиации, строительстве, железнодорожном транспорте все больше используются конструк­ции, выполненные из тонкостенных и штампованных профилей или просто из тонколистовой стали. Эти конструкции обеспечива­ют высокую жесткость и прочность при сравнительно небольшом весе, поэтому их применение в технике является весьма экономич­ным. На железнодорожном транспорте это элементы тележек, сте­нок локомотивов, вагонов и многих других конструкций.

Специфика расчета этих конструкций на прочность породила особую расчетную схему - схему тонкостенного стержня.

Основным признаком тонкостенного стержня является харак­терное отношение его геометрических размеров. В поперечном се­чении одно из измерений (толщина) существенно меньше другого- срединной длины контура s.Последняя в свою очередь намного меньше, чем длина стержня l (рис.15.1).

Длина контура для тонкостенного стержня, представленного на рис.15.1:

s = h + 2b.

Следовательно, характерные размеры тонкостенных стер­жней открытого профиля взаимосвязаны и меняются в преде­лах и .

Рис. 15.1

 

Основные положения теории тон­костенных стержней были даны С.П. Тимошенко. Полное и общее развитие эта теория получила в трудах В.З. Власова и потому обычно назы­вается теорией Власова.

Тонкостенный стержень, как рас­четная схема, сохраняет в себе основ­ные свойства обыкновенного стержня и формулы сопротивления материа­лов, связанные с растяжением (сжа­тием), изгибом и кручением бруса, остаются в основном справедливыми.

Вместе с тем, тонкостенный стержень в силу геометрических соотношений обнаруживает свойства, существенно отличающие его от стержней сплошного сечения. При некоторых видах загружения не соблюдается гипотеза плоских сечений, происходит так называе­мая депланация сечения за счет неравномерной деформации стерж­ня вдоль его оси. Иными словами, не соблюдается принцип Сен-Венана - глубина «проникновения» краевых особенностей вдоль оси существенно больше, чем в сплошном стержне.

Вообще говоря, сравнительная оценка нормальных и касатель­ных напряжений s иt в поперечных сечениях бруса при переходе от сплошного сечения к тонкостенному профилю существенно меняется, и этот вопрос требует особого изучения.

Рис.15.2

 

При кручении тонкостенных стержней и вообще стержней с некруглым поперечным сплошным сечени­ем, поперечные сечения плоские до дефор­мации, искривляются по некоторой поверх­ности w(x, y, z) (рис.15.2), что называется депланацией сечения. По характеру фор­мирования депланаций сечения по длине стержня, следует различать два типа круче­ния стержней: свободное и стесненное.

Если депланация во всех поперечных сечениях одинакова по длине стержня или иначе w(x, y, z) = w(x, y), т.е. она является постоянной и не зависит от z, то такое кручение называется сво­бодным. При переменных депланациях по длине стержня, кручение называется стесненным.

При свободном кручении в поперечных сечениях стержня воз­никают только касательные напряжения, а при стесненном кру­чении, наряду с касательными возникают и нормальные напряже­ния. Эффект от неравномернойдепланации сечения по его длине наиболее существенен для стержней открытого профиля.

После определения полной системы внешних сил, заметим, что порядок вычисления напряжений и перемещений в тонкостенном стержне закрытого профиля при свободном кручении принципи­ально ничем не отличается от метода расчета обычных стержней. Поэтому, здесь этому вопросу специальное внимание не уделяется.

 

Секториальная площадь

 

В дополнение к уже известным геометрическим характеристи­кам сечений (F - площадь поперечного сечения; Sx, Sv - статиче­ские моменты сечения; Jx, Jv, Jxy - осевые и центробежный момен­ты инерции) введем ряд новых. Эти характеристики свойственны только тонкостенным стержням и определяются на основе понятия секториальной площади.

Рассмотрим срединную линию контура поперечного сечения (рис.15.3). Срединная линия - это геометрическое место точек поперечного сечения, равноудаленно расположенных от контурных линий. Выберем на срединной линии начало 0 отсчета дуги s и из заданного полюса Р. Проведем два луча к концам элементарного отрезка ds. Удвоенную площадь треугольника PAB обозначают через .

Очевидно, что

, (15.1)

где r - расстояние от полюса Р до каса­тельной к линии контура в точке А.

Интеграл

, (15.2)

называется секториальной площадью. Таким образом, сектори­альная площадь представляет собой удвоенную площадь, очер­чиваемую радиус-вектором РА при движении т. А по контуру от начала отсчета 0 до некоторого значения дуги s. Если радиус-век­тор вращается по часовой стрелке, приращение площади имеет знак плюс, против часовой стрелки - минус.

Рис.15.3

 

Точка Р называется секториальным полюсом.

При заданном полюсе и заданном начале отсчета в каждом конкретном случае может быть построена эпюра секториальной площади.

Рис.15.4

 

В качестве примера по­строим эпюру секториальной площади для контура, приве­денного на рис.15.4, а. Выби­раем в качестве полюса точ­ку P, а за начало отсчета при­нимаем точку 0 (рис.15.4, а).

Рассмотрим участок 0-3. На этом участке 0 £ s £ a. Век­тор r вращается по часовой стрелке, следовательно эпюра имеет знак плюс:

; ; .

На участке 3-4, 0 £ s £ a, вектор r вращается против часовой стрелки, то есть приращение площади будет отрицательным:

; ; .

На участке 0-2, 0 £ s £ a, вектор r вращается против часовой стрелки, то есть приращение площади будет отрицательным:

; ; .

На участке 2-1, 0 £ s £ a, вектор r вращается по часовой стрелке, то есть приращение площади будет положительным:

; ; .

Эпюра секториальной площади приведена на рис.15.4, б.

Отметим, что при переносе полюса секториальная площадь ме­няется на величины, линейно зависящие от координат x и y, т.е.:

, (15.3)

где и - секториальная площадь относительно нового Р0 и старого полюса Р', соответственно; xc, yc, x0, y0 - координаты центра изгиба и начала отсчета, соответственно.

 


Поделиться:

Дата добавления: 2015-08-05; просмотров: 177; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты