Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Изгиб и кручение тонкостенных стержней




 

Общие положения и основные особенности расчета

В настоящее время в машиностроении, авиации, строительстве, железнодорожном транспорте все больше используются конструк­ции, выполненные из тонкостенных и штампованных профилей или просто из тонколистовой стали. Эти конструкции обеспечива­ют высокую жесткость и прочность при сравнительно небольшом весе, поэтому их применение в технике является весьма экономич­ным. На железнодорожном транспорте это элементы тележек, сте­нок локомотивов, вагонов и многих других конструкций.

Специфика расчета этих конструкций на прочность породила особую расчетную схему - схему тонкостенного стержня.

Основным признаком тонкостенного стержня является харак­терное отношение его геометрических размеров. В поперечном се­чении одно из измерений (толщина) существенно меньше другого - срединной длины контура s.Последняя в свою очередь намного меньше, чем длина стержня l (рис.19.1).

Длина контура для тонкостенного стержня, представленного на рис.19.1:

.

Следовательно, характерные размеры тонкостенных стер­жней открытого профиля взаимосвязаны и меняются в преде­лах и .

Рис. 19.1

 

Основные положения теории тон­костенных стержней были даны С.П. Тимошенко. Полное и общее развитие эта теория получила в трудах В.З. Власова и потому обычно назы­вается теорией Власова.

Тонкостенный стержень, как рас­четная схема, сохраняет в себе основ­ные свойства обыкновенного стержня и формулы сопротивления материа­лов, связанные с растяжением (сжа­тием), изгибом и кручением бруса, остаются в основном справедливыми.

Вместе с тем, тонкостенный стержень в силу геометрических соотношений обнаруживает свойства, существенно отличающие его от стержней сплошного сечения. При некоторых видах загружения не соблюдается гипотеза плоских сечений, происходит так называе­мая депланация сечения за счет неравномерной деформации стерж­ня вдоль его оси. Иными словами, не соблюдается принцип Сен-Венана - глубина «проникновения» краевых особенностей вдоль оси существенно больше, чем в сплошном стержне.

Вообще говоря, сравнительная оценка нормальных и касатель­ных напряжений s иt в поперечных сечениях бруса при переходе от сплошного сечения к тонкостенному профилю существенно меняется, и этот вопрос требует особого изучения.

Рис. 19.2

 

При кручении тонкостенных стержней и вообще стержней с некруглым поперечным сплошным сечени­ем, поперечные сечения плоские до дефор­мации, искривляются по некоторой поверх­ности w(x, y, z) (рис.19.2), что называется депланацией сечения. По характеру фор­мирования депланаций сечения по длине стержня, следует различать два типа круче­ния стержней: свободное и стесненное.

Если депланация во всех поперечных сечениях одинакова по длине стержня или иначе w(x, y, z) = w(x, y), т.е. она является постоянной и не зависит от z, то такое кручение называется сво­бодным. При переменных депланациях по длине стержня, кручение называется стесненным.

При свободном кручении в поперечных сечениях стержня воз­никают только касательные напряжения, а при стесненном кру­чении, наряду с касательными возникают и нормальные напряже­ния. Эффект от неравномерной депланации сечения по его длине наиболее существенен для стержней открытого профиля.

Заметим, что порядок вычисления напряжений и перемещений в тонкостенном стержне закрытого профиля при свободном кручении принципи­ально ничем не отличается от метода расчета обычных стержней. Поэтому, здесь этому вопросу специальное внимание не уделяется.

 


Поделиться:

Дата добавления: 2015-08-05; просмотров: 224; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты