КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Спецификация моделиЭконометрика как система специфических методов начала развиваться с осознания своей главной задачи – отражения связей экономических переменных. Многие экономические процессы наилучшим образом описываются нелинейными соотношениями, например, функциями спроса и производственными функциями. С этой целью в уравнение регрессии начали включаться переменные не только в первой, но и второй степени – с целью отразить свойства оптимальности экономических переменных, то есть наличия значений, при которых достигается минимальное или максимальное воздействие на зависимую переменную. Таково, например, влияние внесения удобрений на урожайность (до определенного уровня насыщение почвы удобрениями способствует росту урожайности, а по достижении оптимального уровня насыщение его дальнейшее наращивание может привести к снижению урожайности). То же можно сказать о воздействии многих социально-экономических переменных, например, влияния дохода на потребление некоторых продуктов питания. В условиях конкретной выборки данных нелинейность влияния переменных может и не подтвердиться, если эти данные варьируют в узких пределах, то есть являются однородными. Предполагая, что ошибки измерения переменных сведены к минимуму, основное внимание в эконометрических исследованиях уделяется ошибкам спецификации модели, то есть ошибкам, вызванным неверным видом уравнения регрессии. В парной регрессии выбор вида математической функции, моделирующей связь переменных, может быть осуществлен тремя методами: 1) графическим; 2) аналитическим, то есть исходя из теории изучаемой взаимосвязи; 3) экспериментальным. При изучении зависимости между двумя признаками наиболее наглядным является графический метод подбора уравнения. Он основан на построении поля корреляции. Основные типы кривых, используемых при количественной оценке связей, представлены на рис. 4.1. Класс математических функций для описания связи двух переменных достаточно широк. Кроме указанных, используются и другие типы кривых. Значительный интерес представляетаналитический метод выбора типа уравнения регрессии. Он основан на изучении материальной природы связи исследуемых переменных. Пусть, например, изучается потребность предприятия в электроэнергии у в зависимости от объема выпускаемой продукции х. Все потребление электроэнергии можно подразделить на две части: 1) не связанное с производством продукции (а); 2) непосредственно связанное с объемом выпускаемой продукции, пропорционально возрастающее с увеличением объема выпуска . Тогда зависимость потребления электроэнергии от объема продукции можно выразить уравнением регрессии вида у = а + вх. 4.1. Если затем разделить обе части уравнения на величину объема выпуска продукции (х), то получим выражение зависимости удельного расхода электроэнергии на единицу продукции z = у/х от объема выпущенной продукции (х) в виде уравнения равносторонней гиперболы z = в + а/х. 4.2. Аналогично, текущие производственные затраты предприятия могут быть подразделены на условно-постоянные и условно-переменные, и тогда зависимость себестоимости единицы продукции от объемов производства также характеризуется равносторонней гиперболой. Выбор вида уравнения регрессии экспериментальным методом обычно осуществляется при обработке информации на компьютере путем сравнения величины остаточной дисперсии, рассчитанной при разных моделях. Чем меньше величина остаточной дисперсии, тем в меньшей мере наблюдается влияние прочих, не учитываемых в уравнении регрессии факторов, тем лучше уравнение регрессии подходит к исходным данным.
Если остаточная дисперсия оказывается примерно одинаковой для нескольких функций, то на практике предпочтение отдается более простым видам функций, ибо они в лучшей степени поддаются интерпретации и требуют меньшего объема наблюдений. Число наблюдений должно в 6-7 раз превышать число рассчитываемых параметров при переменной х. Значит, если мы выбираем параболу второй степени у = а + вх + сх2 4.3. то требуется объем информации не менее 14 наблюдений. Учитывая, что эконометрические модели часто строятся по данным рядов динамики, ограниченным по протяженности (10, 20, 30 лет), то при выборе спецификации модели предпочтительнее модель с меньшим числом параметров при х. 2. Классификация нелинейных функций. Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций. В общем случае линейное уравнение выглядит так, что каждый объясняющий элемент, за исключением постоянной величины, записан в виде произведения переменной и коэффициента у = a + b1х1 + b2х2 + ... 4.4. Уравнения вида у = a + 4.5. и у = a х b 4.6. являются нелинейными. Зависимости (4.5) и (4.6) считаются приемлемыми для описания кривых Энгеля, характеризующих соотношение между спросом на определенный товар (у) и общей суммой дохода (х). Как можно определить параметры a и b в каждом уравнении, зная значения у и х ? В конечном счете в обоих случаях можно применить линейный регрессионный анализ, для этого потребуется лишь небольшая подготовка. Во-первых, заметим, что уравнение (4.4.) является линейным в двух смыслах. Правая часть линейна по переменным, если определить их в представленном виде, а не как функции. Следовательно, она состоит из взвешенной суммы переменных, а параметры являются весами. Правая часть также линейна по параметрам, так как она состоит из взвешенной суммы параметров. Отсюда различают два класса нелинейных регрессий: 1) регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам. Примером этого класса моделей могут служить полиномы разных степеней у = а + вх + сх2; у = а + вх + сх2+ dх3, а также равносторонняя гипербола у = в + а/х. 2) нелинейные регрессии по оцениваемым параметрам: - степенная у = а хв - показательная у = а вх - экспоненциальная у = е а+ вх. Первый класс моделей (нелинейных по переменным) не таит каких-либо сложностей в оценке ее параметров. Она определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в параболе у = а + вх + сх2 , заменяя переменные х1=х, а х2=х2 , получаем двухфакторное уравнение линейной регрессии у = а + вх1 + сх2. Соответственно для полинома третьего порядка получим трехфакторную модель линейной регрессии и так далее.Следовательно, полином любого порядка сводится к линейной регрессии с ее методами оценивания параметров. Среди нелинейной полиномиальной регрессии чаще всего используется парабола второй степени, в отдельных случаях – полином третьего порядка. Ограничения в использовании полиномов более высоких степеней связаны с требованием однородности совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и, соответственно, тем менее однородна совокупность по результативному признаку. Для равносторонней гиперболы мы можем заменить 1/х на z и получим линейное уравнение регрессии, оценка параметров которого может быть дана МНК. Иначе обстоит дело со вторым классом моделей, то есть с регрессией, нелинейной по оцениваемым параметрам. Данный класс нелинейных моделей можно разделить на два типа: а) нелинейные модели внутренне линейные и б) нелинейные модели внутренне нелинейные. Если модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду. Пример – степенная функция у = а хв. Данная модель нелинейна относительно оцениваемых параметров, так как включает параметры а и в неаддитивно. Однако ее можно считать внутренне линейной, ибо логарифмирование данного уравнения приводит его к линейному виду. Соответственно оценки параметров а и в могут быть найдены МНК. Внутренне нелинейной будет модель вида у = а + вхс, так как ее невозможно превратить в линейный вид никакими преобразованиями переменных. В нашем начальном курсе эконометрики мы будем рассматривать только модели нелинейные по переменным (то есть первый класс моделей) и модели, нелинейные по параметрам, но внутренне линейные (то есть второй класс, первый тип).
|