Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Прямая на плоскости. Различные уравнения




a) Y=kx+b

b) Y- =k(x- )

c)

d)

e)

f)

. Уравнение с угловым коэффициентом.

k= tg α – угловой коэффициент.

Если b=0 то прямая проходит через начало координат. Уравнение примет вид

Если α=0, то k = tg α = 0. То прямая пройдет параллельно оси ох.

Если α=π/2, то уравнение теряет смысл. В этом случае уравнение примет вид и пройдет параллельно оси оу.

Общее уравнение прямой.

A, B, C – произвольные числа, причем А и В не равны нулю одновременно.

· Если В=0, то уравнение имеет вид или . Это уравнение прямой, параллельной оси оу. и проходящей через точку

· Если В≠0, то получаем уравнение с угловым коэффициентом .

· Если А=0, то уравнение имеет вид . Это уравнение прямой, параллельной оси ох.

· Если С=0, то уравнение проходит через т. О (0;0).

Уравнение прямой, проходящей через точку, в данном направлении.

т М (х00).

Уравнение прямой записывается в виде .

Подставим в это уравнение точку М

Решим систему:

Уравнение прямой, проходящей через 2 точки.

К (х11) М (х22)

Уравнение прямой в отрезках.

К (а;0); М (0;b)

Подставим точки в уравнение прямой:

Уравнение прямой, проходящей через данную точку, перпендикулярно данному вектору.

М000).

Возьмем произвольную точку М (х;у).

Т.к. , то

Нормальное уравнение прямой.

Уравнение прямой можно записать в виде:

Т.к. ; , то:



Поделиться:

Дата добавления: 2015-04-21; просмотров: 137; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты