КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Каноническое уравнение параболыПараболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой. Расстояние от фокуса F до директрисы называется параметром параболы и обозначается через p (p > 0). Для вывода уравнения параболы выберем систему координат Оху так, чтобы ось Ох проходила через фокус F перпендикулярно директрисе в направлении от директрисы к F, а начало координат О расположим посередине между фокусом и директрисой (см. рис. 60). В выбранной системе фокус F имеет координаты , а уравнение директрисы имеет вид , или . Пусть — произвольная точка параболы. Соединим точку Μ с F. Проведем отрезок ΜΝ перпендикулярно директрисе. Согласно определению параболы MF = ΜΝ. По формуле расстояния между двумя точками находим: Следовательно, Возведя обе части уравнения в квадрат, получим т. е. (11.13) Уравнение (11.13) называется каноническим уравнением параболы. Парабола есть линия второго порядка.
|