![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Теорема 1.1) Якщо функція f(x), яка має похідну в інтервалі (a, b), зростає на [a, b], то її похідна в інтервалі (a, b) невід’ємна, тобто ¦¢(х)³0. 2) Якщо функція f(x) неперервна на відрізку [a, b] і має похідну в (a, b), причому ¦¢(х)>0 для a<x<b, то ця функція зростає на [a, b].
Скорочено можна записати: Доведення. 1.Нехай та праву похідну
Оскільки ліва і права похідні збігаються в точці 2.Нехай в околі точки
Розглянемо два випадки. а)
б) Отже, в околі точки Аналогічна теорема має місце, якщо функція f(x) спадає.
|