КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
End whileЕсли эта процедура не заканчивает работу, то она даёт соответствие А ~ N. что невозможно ввиду конечности А. Значит, процедура заканчивает работу при i = k. Но в этом случае построено взаимно-однозначное соответствие А~1..k. ТЕОРЕМА 2 Любой отрезок натурального ряда конечен: . доказательство От противного. Пусть существуют бесконечные отрезки натурального ряда. Рассмотрим наименьшее п такое, что |1..п| = ∞. Тогда отрезок 1..п, равномощен некоторому своему собственному подмножеству А, |1..п| = |А|, то есть существует взаимно-однозначное соответствие f из отрезка 1..п в подмножество А. I: Обозначим . Рассмотрим соответствие из отрезка 1..n-1 в его собственное множество А - i, задаваемое следующим правилом: if f(x) < i then f(x) else f(x) -1 end if. Это соответствие является взаимно однозначным, а значит, отрезок 1..n-1 является бесконечным, что противоречит выбору п. СЛЕДСТВИЕ Различные отрезки натурального ряда неравномощны: п≠т=> \1..п\ ≠ |1..т|. доказательство Пусть для определённости п > т. Тогда . Если |1..п| = |1..т|, то |1..т| = ∞, что противоречит теореме. Пример.
|