КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Точки перегиба⇐ ПредыдущаяСтр 21 из 21 О. Пусть непрерывна в точке и имеет в этой точке конечную или бесконечную производную. Тогда если при переходе через точку меняет направление выпуклости, т.е. такое, что на одном из интервалов , она выпукла вверх, а на другом выпукла вниз, то называется точкой перегиба функции . Например, для – точка перегиба.
Теорема (необходимое условие точки перегиба) Если точка перегиба функции и в некоторой окрестности , непрерывная в точке , то .
Доказательство. Допустим, . Например, . Так как непрерывна в точке , то . Значит, выпукла вниз в окрестности . Но это противоречит определению точки перегиба. ■
Теорема (достаточное условие точки перегиба) Если непрерывна в точке , имеет в точке и при переходе через точку меняет знак, то – точка перегиба функции .
|