Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Вопрос №14 Струйная модель движения жидкости, параметры потока.




Читайте также:
  1. A) Сервис Параметры Вид Отображать Строка состояния команд меню
  2. CAPM (Модель оценки капитальных активов)
  3. Grand sissonne owerte без продвижения
  4. Grand sissonne owerte без продвижения
  5. I.Модель Баумоля
  6. II.Модель Миллера – Ора.
  7. II.Четыре главных средства продвижения
  8. IV. Модель «продукт - рынок».
  9. V2:4 Новые религиозные движения и нетрадиционные религии
  10. W (живое сечение) – поверхность в пределах потока жидкости, проведенная перпендикулярно направлению струек.

В гидравлике рассматривается струйная модель движения жидкости, т.е. поток представляется как совокупность элементарных струек жидкости, имеющих различные скорости течения us. Индекс Sозначает (напоминает), что в каждой точке живого сечения скорости различны. Элементарные струйки как бы скользят друг по другу. Они трутся между собой и вследствие этого их скорости различаются. Причём, в середине потока скорости наибольшие, а к периферии они уменьшаются. Распределение скоростей по живому сечению потока можно представить в виде параболоида с основанием, равным S. Высота его в любой точке равна скорости соответствующей элементарной струйки uS. Площадь элементарной струйки равна dS. В пределах этой площади скорость можно считать постоянной. Понятно, что за единицу времени через живое сечение потока будет проходить объём жидкости Vt, равный объёму параболоида. Этот объём жидкости и будет равен расходу потока.

.

С учётом понятия средней скорости, которая во всех точках живого сечения одинакова, за единицу времени через живое сечение потока будет проходить объём жидкости (обозначим его Vtср ), равный:

Vtср=SVср.

Если приравнять эти объёмы Vtср = Vt=параболоида, можно определить значение средней скорости потока жидкости:

В дальнейшем среднюю скорость потока жидкости будем обозначать буквой V без индекса ср.

При неравномерном движении средняя скорость в различных живых сечениях по длине потока различна. При равномерном движении средняя скорость по длине потока постоянна во всех живых сечениях.

 

Вопрос №15. Уравнение неразрывности потока.

Рассмотрим установившийся поток между живыми сечениями 1,2 ( рис. 26 ).

    Рис. 26 Живым сечением называется поверхность в пределах потока, проведенная параллельно к направлению струек. За единицу времени через живое сечение 1 в рассматриваемый объем жидкости ,

где - площадь живого сечения, - средняя скорость в сечении.

Через живое сечение 2 за это время вытекает объем жидкости

,

где - площадь живого сечения 2, - средняя скорость в сечении 2.

Поскольку форма объема 1-2 с течением времени не изменяется, жидкость несжимаемая, объем жидкости должен равняться объему вытекающему .



Поэтому можно записать

.

Это уравнение называется уравнением неразрывности.

Из уравнения неразрывности следует, что

.

Средние скорости обратно пропорциональны площадям соответствующих сечений.

Вывод основных гидродинамических уравнений начнём с вывода уравнения неразрывности, выражающего закон сохранения в гидродинамике.

Математическое описание состояния движущейся жидкости осуществляется с помощью функций, определяющих распределение скоростей и каких-либо двух термодинамических величин, например, - давления и - плотности.

Скорость, давление и плотность жидкости будем относить к данным точкам пространства, а не к определённым частицам жидкости, передвигающимся во времени и в пространстве. То есть будем пользоваться переменными Эйлера.

 

    Рис. 11 Рассмотрим некоторый объём Vo пространства. Количество (масса) жидкости в этом объёме есть . Через элемент поверхности , ограничивающей рассматриваемый объём, в единицу времени протекает количество жидкости ( рис. 11).  

Вектор по абсолютной величине равен площади элемента поверхности и направлен по внешней нормали к ней. Тогда положительно, если жидкость вытекает из объёма, и отрицательно, если жидкость втекает в него.



Полное количество жидкости, вытекающей в единицу времени из объёма Vo

.

где S - поверхность, ограничивающая выделенный объём Vo.

С другой стороны, уменьшение количества жидкости в объёме Vo можно записать в виде

.

Приравнивая оба выражения, получаем:

.

Интеграл по поверхности преобразуем в интеграл по объёму

.

Таким образом,

.

Поскольку это равенство должно иметь место для любого выделенного объёма, то должно быть равным нулю подынтегральное выражение, т.е.

.

Получили уравнение неразрывности.

Расписав выражение можно записать

В декартовых координатах

.

Вектор называют плотностью потока жидкости.

Его направление совпадает с направлением движения жидкости, а абсолютная величина определяет количество жидкости, протекающей в единице времени через единицу площади, расположенной перпендикулярно к скорости.

 


Дата добавления: 2015-04-18; просмотров: 101; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты